Improved ML selection on sensor-on events

Giuseppe Maria Oppedisano

Tdea Classify tracks based on topology

- From cut based analysis: create a dataset of tracks
- Train the model on those tracks
- Ideally it will learn to generalise outside the cut region

- Sensor-on: easy to identify (cut on rho)
- Identify low-energy sensor-on events

$$\rho \equiv \frac{\text{sc}_{\text{rms}}}{\text{sc}_{\text{nhits}}} < 0.15$$

2

The Dataset

- From cut on rho + visual inspection: select relevant events
- Cut a 100x100 patch around the coordinates of the sensor on event in the original image
- Data Augmentation: Position + Flips + 20° Rotations •

Event Classes:

• Noise, Sensor_on, Alfa, Other

Sensor_on

Alfa

Other

Noise

The Model

- For now: simple convolutional classifier (test the approach)
- Train on 100x100 image patches selected via the help of cut based analysis

Layer (type)	Output Shape	
<pre>input_layer (InputLayer)</pre>	(None, 100, 100, 3)	
conv2d (Conv2D)	(None, 100, 100, 16)	
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 50, 50, 16)	
conv2d_1 (Conv2D)	(None, 50, 50, 32)	
<pre>max_pooling2d_1 (MaxPooling2D)</pre>	(None, 25, 25, 32)	
conv2d_2 (Conv2D)	(None, 25, 25, 64)	
<pre>max_pooling2d_2 (MaxPooling2D)</pre>	(None, 12, 12, 64)	
flatten (Flatten)	(None, 9216)	
dense (Dense)	(None, 64)	
dropout (Dropout)	(None, 64)	
dense_1 (Dense)	(None, 4)	

Using the model on real data "Faking" Higher resolution

• Idea:

- Move the model across the image with stride 10
- Each 10x10 area will be classified multiple times
- Take the mean probability -> classify
- More resilient to errors
- Independent of the model, possibility to swap it out and use on other aspects

5

Some Examples Applying this technique on random independent pictures

Label Matching to Data

- Evaluate IoU between model prediction and Reco "boxes" (via sc_xmin, sc_ymin, ...)
- Assign label to dataframe based on IoU

Comparison with Rho cut

Filtered by rho > 0.15

Model finds more Sensor on events at low energy than rho cut

How can we be sure they are real sensor-on?

Test on other Pedestal Runs

- Tested on independent pedestals (small sample)
- For now model performed the same as rho cut
- Need more pedestal runs
- Isolated some noise events which made it past rho<0.15 (2%) of total)

Conclusion Going Forward

- The model works and has a lot of room for improvement:
- A bigger dataset is likely to vastly improve performance
- performance

• Model Architecture can be modified to increase resolution and

What's next? Image segmentation: in development

- From Redpixes: Truth Mask
- Train on real images, goal: reconstruct relevant pixels from reco
- Quality cuts on reco to create classes of events (automate the dataset creation process)
- Identify relevant pixels from images and classify them

Merged Mask

Raw

