KLOE needs to reach permil accuracy

on $\sigma_{\pi\pi}$ with ISR

Stefan E. Müller Laboratori Nazionali di Frascati

(for the KLOE collaboration)

Working Group on Rad. Corr. and MC Generators for Low Energy Frascati, 16-17 October 2006

KLOE analysis: Small angle

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$ a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

→ No photon tagging!

$$\vec{p}_{\gamma}=-\vec{p}_{\rm miss}=-(\vec{p}_++\vec{p}_-)$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced Backgr. contamination

KLOE analysis: Large angle

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$ a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

→ No photon tagging!

$$\vec{p}_{\gamma}=-\vec{p}_{\rm miss}=-(\vec{p}_++\vec{p}_-)$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced Backgr. contamination

b) Photons at large angles $500 \le 0 \le 1200$

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

➔ Photon tagging possible!

- Threshold region accessible
- Increased contribution from FSR
- Contribution from $\phi \rightarrow f_0(980)\gamma \rightarrow \pi^+\pi^-\gamma$

KLOE analysis: The Ratio

perform normalization with $\mu\mu\gamma$ events

$$\sigma_{\pi\pi}^{Born}(s') \approx \frac{d\sigma_{\pi\pi\gamma}^{obs} / ds'}{d\sigma_{\mu\mu\gamma}^{obs} / ds'} \sigma_{\mu\mu}^{Born}(s')$$

• Some Effects will cancel out in the ratio:

Luminosity (LA Bhabhas)	0.6%
Vacuum polarization	0.2%
FSR corrections	0.3%
Radiator function	0.5%
Total theoretical Error	0×%
	0.3%

- Also some cancellations in experimental selection efficiencies are expected
- Needs to select $\pi\pi\gamma$ events with similar precision as $\pi\pi\gamma$
- •Compare $\mu\mu\gamma$ -yield in data with Monte-Carlo simulation (PHOKHARA generator), which is using identical radiative ISR-corrections as for the F_{π} analysis (radiator function)

Important cross check of radiative corrections in MC!

Extracting $\sigma_{\pi\pi}$ from $\pi\pi\gamma$ events:

Initial state radiation:

- Important ingredient for any radiative return measurement
- Universal correction, independent from Final State
- Used at KLOE analysis:
 - PHOKHARA with NLO-ISR [Eur. Phys. J. C24 (2002) 71]
 - claimed precision 0.5% translates directly into error of $a_{\mu}^{had,lo}$

used in the analysis in the form of a differential cross section with $F_{\pi}=1$

Final state radiation:

- COLUMN COLUMN
- cross section measurement has to be incl. in FSR for Dispersion Integral
- Model dependence for pions
 - scalar QED (sQED)
 - Resonance Perturbation Theory (RPT)
- Used in KLOE analysis:
 - PHOKHARA with FSR (sQED)
 - FSR at NLO for pions, muons, kaons
 - contains also simultaneous emission of ISR and FSR photon
- partly suppressed in small-photon-angle analysis
- Enters Determination of Eff. of kinematical variables (M_{Trk} ,...) and transition from $M^2_{\pi\pi}$ to s'
- Good Understanding of FSR is crucial for measuring threshold region <0.35 GeV²

Additional final states:

a)
$$\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$$

- process interferes with FSR amplitude
- main limitation at threshold due to model dependence in amplitudes
- Used in KLOE analysis:
 - hep-ph/0605244 Pancheri ,Shekhovtsova , Venanzoni (Achasov 4q)
 - PHOKHARA (KaonLoop, NoStructure, KLOE Fit)

Effect not only visible in Spectrum, but also in Forward-Backward Asymmetry

$$A = \frac{N(\theta^{+} > 90^{\circ}) - N(\theta^{+} < 90^{\circ})}{N(\theta^{+} > 90^{\circ}) + N(\theta^{+} < 90^{\circ})}$$

due to different C-Parity of $\pi^+\pi^-$ for ISR- and FSR-amplitude

- Data
- \triangle Simulation FSR+ISR
- ☐ Simulation FSR+ISR+ scalar(KL)

Additional Final States:

b)
$$\phi \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \gamma$$
 (VMD)

- Contribution is small: BR($\rho \rightarrow \pi \gamma$)=4.5·10⁻⁴
- Again affects threshold region!
- Used in KLOE $\sigma_{\!\scriptscriptstyle \pi\pi}$ analysis:
 - Pancheri ,Shekhovtsova , Venanzoni (work in progress)

Vacuum Polarisation:

- cross section measurement has to be excl. in Vac. Pol. for Dispersion Integral
- divide for $\delta(s) = (\alpha(s)/\alpha(0))^2$
- Used in KLOE analysis:
 - Vacuum Polarisation function by F. Jegerlehner (now available at http://www-com.physik.hu-berlin.de/~fjeger/alphaQEDn.uu)
- In principle one should apply an *iterative* procedure by calculating the Vac. Pol. using the cross section data to which it is then reapplied etc.

 \rightarrow up to now not done in KLOE analysis

• Contributes about 0.2% to the error on the evaluation of $a_{\mu}^{had,lo}$ in the published KLOE analysis

Luminosity:

Luminosity is measured using "Large angle Bhabha" events (55°< θ_e <125°)

see dedicated talk by F. Nguyen tomorrow!

2 independent generators used at KLOE for radiative corrections: -BABAYAGA (Pavia group): $\sigma_{eff} = (431.0 \pm 0.3_{stat})$ nb C. M. Carloni Calame et al., Nucl. Phys., B584, 459, 2000 -BHAGENF (Berends modified): $\sigma_{eff} = (430.7 \pm 0.3_{stat})$ nb F. Berends and R. Kleiss, Nucl. Phys., B228, 537, 1983 E. Drago and G. Venanzoni, Report INFN-AE-97-48, 1997

Both groups of authors quote a systematic uncertainty of 0.5%

Together with an exp. syst. uncertainty of 0.3%, this gives 0.6% uncertainty on $a_{\mu}^{\ had,lo}$

Other background channels:

Soly KLOB

a) $e^+ e^- \rightarrow e^+ e^- \pi^+ \pi^-$

- contribution only in case when photon is NOT tagged
- Used in publ. KLOE analysis
 - Result from EKHARA generator (hep-ph/0310335, Czyz, Nowak)
 - added as syst. uncertainty to background contribution

b) $e^+ e^- \rightarrow e^+ e^- \mu^+ \mu^-$

- only in case when photon is NOT tagged
- Used for prelim. checks:
 - NEXTCALIBUR (hep-ph/0011031) (Berends, Papadopoulos, Pittau)
- negligigible for e+e- $\rightarrow \mu\mu\gamma$ analysis
- small for e+e- $\rightarrow \pi \pi \gamma$ analysis when e⁺,e⁻ escape along beampipe
- otherwise one needs to implement generator ¹⁰ in detector simulation to understand detector response for e⁺,e⁻ tracks.

$\sigma_{\pi\pi\pi}$ via ISR:

- contribution to $a_{\mu}^{had,lo}$ 10 times smaller than for $\pi\pi$ -channel
- not yet studied at KLOE, but is on our list

- contained inPHOKHARA (ISR only)
- possible background for $\pi\pi$ -analysis when not vetoing π^0
- FSR will change the $M^2_{_{\pi\pi}}$ of the charged pions

DAΦNE Off-peak runs: :

- Run at √s=1000 MeV between Dec. 2005 and March 2006
 → ~225pb⁻¹ on tape
- Energy scan around φ-peak
 → 4 scan points, 10pb⁻¹ each

Very interesting data! Will allow to attack many problems:

- Final state radiation (see talk of G. Venanzoni)
- Determination of Scalar parameters

• etc.

Analysis has started...

Summary:

"KLOE MC and Rad. Corr. Shopping List":

- FSR: Model dependent for pions...needs different parametrizations implemented in MC. For muons, can in principle be checked by comparing data yield with MC expectation.*
- Scalars: • $\rho\pi$: MC crucial to disentangle the individual contributions present in data, especially at low M².*
- ISR: Basic ingredient to Radiative Return measurements. Current precision of 0.5% gives 0.5% error on $a_{\mu}^{had,lo}$. Any improvement and independent cross checks are welcome.
- Vac. Pol.: Error dominated by exp. input, introduces 0.2% error on $a_{\mu}^{had,lo}$
- $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \gamma$ Addition of FSR in PHOKHARA important for background studies for $\pi\pi\gamma$ analysis.
- $e^+ e^- \rightarrow e^+ e^- \pi^+ \pi^-$ • $e^+ e^- \rightarrow e^+ e^- \mu^+ \mu^-$ Generators exist for these channels, and contributions are small.
- Luminosity \rightarrow see Talk of F. Nguyen

* Off-Resonance data will help to settle these issues