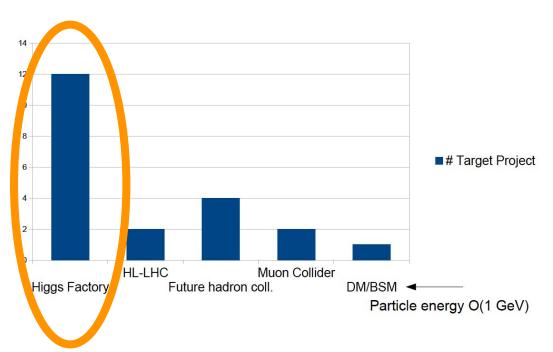

DRD6 - Introduction

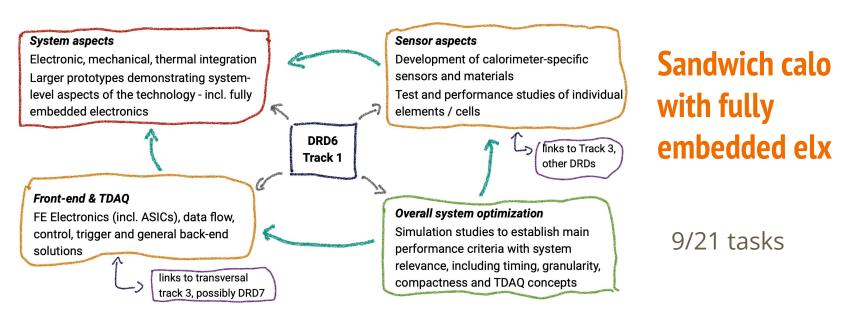
G. Gaudio

DRD6 Collaboration



128 institutes (at present) 19 INFN units (15%) (composition in FTE not yet clear)

Scientific targets in DRD6 calorimetry development


Technologies relevant for FCC will be covered by DRD 6

- Higgs factories dominate
 - HF includes heavy flavor that target superb elm. energy resolutions
- (Already now) orientation towards future hadron collider and muon collider

Scientific programs

4 Work Packages addressing different types of calorimeters + electronics

Scientific programs

4 Work Packages addressing different types of calorimeters + electronics

Scintillator based sampling calorimeters

Scintillating Tile HCAL for FCC-hh, FCC-ee

Dual Readout Fiber Calorimeter for Higgs Factories

R&D on Spaghetti (EM) Calorimeter technologies for LHCb Upgrade II,
Higgs factories, FCC-hh

Fast-timing, ultracompact, radiation hard, EM calorimetry (RADiCAL) for FCC-hh

High sampling fraction EM calorimeter with crystal grains (GRAiNITA) for FCC-ee

Homogeneous EM crystal calorimeters

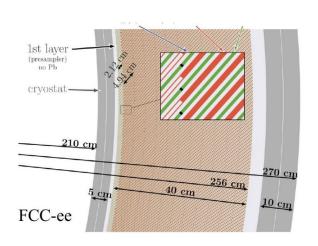
Maximum Information Crystal Calorimeter for Higgs Factories

High Granularity Crystal Calorimeter for Higgs Factories

Fast, segmented Crystal calorimeter for Muon Collider (CRILIN)
Oriented Calorimeter (OREO)

Large mass cryogenic calorimeters

Large mass cryogenic calorimeters for neutrinoless double beta decay **Optical** calorimeters


11/21 tasks

It was organized as working group => WP to be funds loaded

ScintCal: Scintillator material for future calorimeters

Scientific programs

4 Work Packages addressing different types of calorimeters + **electronics**

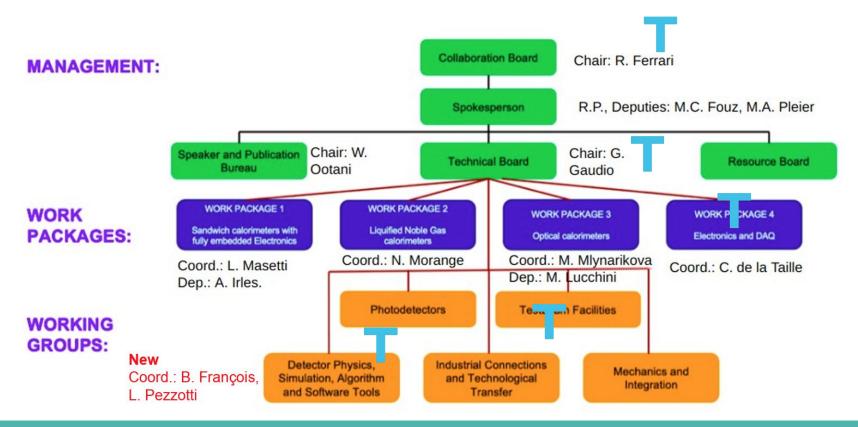
Liquified Noble Gas calorimeters1/21 tasks

Work Package dedicated to

- Development of ASIC (common for different prototypes)
- Readout and DAQ

It was organized as working group => WP to be funds loaded

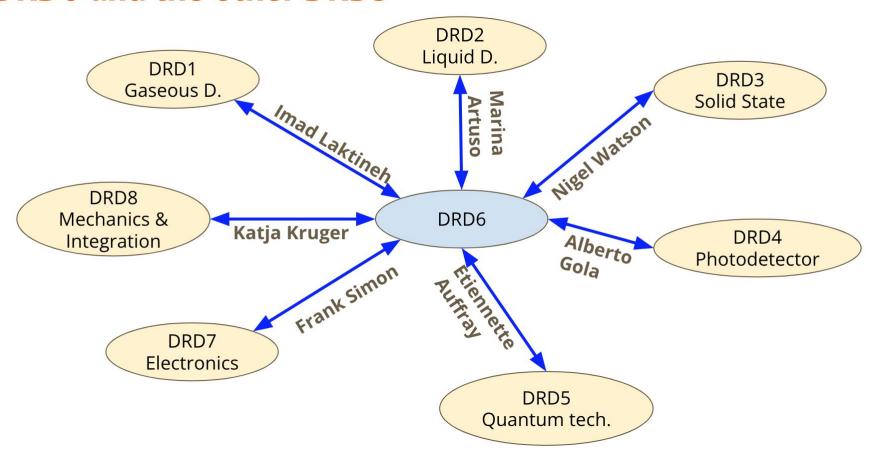
Working Groups


Activities common to many (all) Work Packages: exploit synergies, proceed faster and save resource (both personpower and money)

5 WGs foreseen:

- WG1 Software: start working
- WG2 Photodetectors: organization started
- WG3 Testbeam: organization started
- WG4 Industrial connection and technological transfer (STAND-BY)
- WG5 Mechanics and Integration (discussion started)

Backup


Organigramma

TB 2025 approved at CERN

WP.Task	Task	Beam	Beam line	weeks	Dates
1.3.2	MPGDCAL	pion	PS - T10	2	15-29.10
3.1.1	HGCCAL	e, pions, muons	PS - T9	2	26.6 - 8.7
3.1.2	MAXICC	high purity e	SPS-H6	2	17.30.9
3.1.3	CRILIN	hign purity e	SPS-H2	1	17-23.9
3.1.4	OREO	high purity e, mixed particles	SPS-H2	1	6-19.8
3.2.3	RADICAL	high purity e	SPS-H6	1	10-16.9
3.3.1	DRCAL	e, pons, muons	SPS-H8	4	6-19.8 + 24.9-7.10

DRD6 and the other DRDs

WP1

Project	Sensitive Material/ Absorber	DRDT	Target Application	Current Status
Task 1.1: Highly pixel	lised electromagnetic section			
Project 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of Timing for PFA needed
Project 1.1.2: Highly compact calo	Solid state (Si or GaAs)/ Tungsten	6.2	e^+e^- collider forward part	Prototypes with non-optimised sensors, Sensor optimisation and data transfer studies ongoing
Project 1.1.3: DECAL	CMOS MAPS/ Tungsten	6.2, 6.3	e^+e^- collider central detector. Future hadron collider	Prototypes with non-optimised sensors, Sensor optimisation ongoing
Project 1.1.4: Sc-Ecal	Scintillating plastic strips/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of Timing for PFA needed
Task 1.2: Hadronic se	ction with optical tiles			
Project 1.2.1: AHCAL	Scintillating plastic tiles/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of Timing for PFA needed
Project 1.2.2: ScintGlassHCAL	Heavy glass tiles/ Steel	6.2	e^+e^- collider central detector	Material studies and specifications for prototypes
Task 1.3: Hadronic se	ction with gseous readout			
Project 1.3.1: T-SDHCAL	Resistive Plate Chambers/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of Timing for PFA needed
Project 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/ Steel	6.2, 6.3	$\mu^+\mu^-$ collider central detector	Small prototype for proof-of-principle, Lateral and longitudinal extension envisaged
Project 1.3.3: ADRIANO3	Resistive Plate Chambers +Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3	e^+e^- collider central detector BSM searches in MeV-GeV range	RPC, Scintillating Tiles advanced status, R&D on heavy glass needed

WP2

<u>.</u>	Milestone	Deliverable	Description	Due date
	M2.1		Design Review of Test Module - Sign-Off	2025
Noble-Liquid		D2.1	Test Module Assembled	¿ 2026
Calorimeter	M2.2		Test Module Ready for Cool-Down	¿ 2026
		D2.2	Ready for Data Taking (dep. on CERN SPS Schedule)	į 2026

WP3

Name	Calorimeter type	Scintillator/WLS	Photodetector	Application
HGCCAL	EM / Homogeneous	BGO, LYSO	SiPMs	e^+e^- collider
MAXICC	EM / Homogeneous	PWO, BGO, BSO	SiPMs	e^+e^- collider
CRILIN	EM / Quasi-Homog.	PbF_2 , PWO -UF	SiPMs	$\mu^+\mu^-$ collider
GRAINITA	EM / Quasi-Homog.	$ZnWO_4$, BGO	SiPMs	e ⁺ e ⁻ collider
SPACAL	EM / Sampling	GAGG, organic	MCD-PMTs, SiPMs	e ⁺ e ⁻ /hh collider
RADICAL	EM / Sampling	LYSO, LuAG	SiPMs	hh collider
DRCAL	EM+HAD / Sampling	PMMA, plastic	SiPMs, MCP	e^+e^- collider
TILECAL	HAD / Sampling	PEN, PET	SiPMs	e ⁺ e ⁻ /hh collider

Oreo EM/Homogeneous CryoDB ScintCAL