

CAEN Digitizer setup in ePIC-Lab Irnerio

<u>Riccardo Ricci¹, Edoardo Rovati²</u>

¹INFN Bologna

²University and INFN, Bologna

ALICE-ePIC meeting 28/05/2025

PROVIDE Resume - CAEN-DT572B

- A digitizer converts analog signals into digital data for processing and analysis
- The CAEN DT5742B is a 12-bit, 5 GS/s digitizer based on a DRS4 (Domino Ring Sampler) chip
- Designed for fast waveform acquisition, equipped with 16+1 channels for digitization (1 can be used as fast trigger) + external trigger (NIM)
- Light-weight solution which can become useful in different environments
- Full Scale Range: 1 Vpp
- It comes from CAEN with dedicated C Libraries
- Now in ePIC-Lab Irnerio

- **CAEN** Digitizer
- Pulser (provides NIM trg to the DGZ + trg to the laser)
- 2 pw supplies (providing bias and powering the amplifier)
- Amplifier (Mini-circuits ZFL1000LN+)
- Linux desktop $PC \rightarrow$ controls digitizer, pw supplies, pulser

DARK BOX:

- SiPM + carrier + adapter board
- Laser GSL45A 450 nm

EPIČ Laser & filter

Thorlabs laser (class B) used in laboratory:

- 450±10 nm Gain-Switched Laser
- Repetition rates: 200 kHz-200 MHz
- Pulse duration < 90 ps

4

EPIX Laser & filter

- 1. NE70A (Thorlab) Ø25 mm Absorptive ND Filter, SM1-Threaded Mount, Optical Density: [1.0 8.0]
- 2. ED1-S20-MD Ø1" SM1-Mounted Polymer Engineered Diffuser, 20° Square Pattern

- Thorlabs XE25C11D Aluminum Enclosure with Hinged Door
- Not completely dark, needed some adjustments with black tape + black cloth
- SMA and light fiber port
- Contains: sensor+board, double-axis mover, laser system

- Thorlabs XE25C11D Aluminum Enclosure with Hinged Door and optical plane
- Not completely dark, needed some adjustments with black tape + black cloth

 \rightarrow adjustments done monitoring the current variation during the night

Trigger system

- Pulser and CAEN DGZ both handled remotely by lab PC
- Trg provided by Pulser TGP3152
 - \rightarrow 200 kHz NIM signal from Pulser_CH1 to DGZ-NIM TRG (LEMO port)
 - \rightarrow 200 kHz 3 V signal from Pulser_CH1 to LASER

Signal amplification

- Amplifier: Mini-circuits ZFL-1000LN+
- Low-noise, operational range 0.1 1000 MHz
- Powering at 15 V
- Now using a prototype array (thanks Daniele!) providing 4 amplifiers in parallel, in a single structure
- full array available for future measurements with multiple channels at once

Maximum Ratings

Parameter	Ratings	
Operating Temperature	-20°C to 71°C	
Storage Temperature	-55°C to 100°C	
DC Voltage	17V	
Input RF Power (no damage)	+5 dBm	

Permanent damage may occur if any of these limits are exceeded.

Signal visualization & analysis

Signal analysis with DGZ - persistence

- Only good waveforms selected (with p2p or threshold in amplitude)
- Peaks are identified and collected, then aligned at the rising edge
- to be perfectioned the individuation of the single-pe peak (needed for other analysis)

Signal analysis with DGZ - laser signal

Pulser provides:

- NIM trigger to the DGZ
- trigger to the laser

Persistence is **auto-disabled** if a certain number of good signals (i.e. cluster of rising edges) is reached within a certain window wrt to the whole acquisition window

Laser signal has to be shifted accordingly (especially for shorter time-acquisition windows) ¹²

Signal analysis with DGZ - laser signal

Pulser provides:

- NIM trigger to the DGZ
- trigger to the laser
- channels alignment in time

Persistence is **auto-disabled** if a certain number of good signals (i.e. cluster of rising edges) is reached within a certain window wrt to the whole acquisition window

Laser signal has to be shifted accordingly (especially for shorter time-acquisition windows)

Summary and conclusions

- CAEN Desktop Digitizer DT5742B now installed and operating in ePIC Lab Irnerio with dark box, laser setup and pulser-driven trg system
- Prepared an 4-amplifier array for future measurements with multiple channels at once
- The system now is equipped with a server to take/download data + first version of a online analysis framework (work in progress)
- First set of results shows the adaptability of this system for different kind of studies (still perfectioning)

Next steps:

- Finalize data with new Hamamatsu sensor (50 and 75 um DCR, tau..)
- Studies with laser on/off
- studies with back-side illuminated SiPMs

Backup

Measurement of the decay constant

- Waveforms with good signals are fitted and tau+fit parameters extracted and saved
- Code has to be perfectioned to consider only signals from 1 photoelectron (WIP)

Using a recipe we are able to do **dark measurements**:

- Single SPAD values
- DCR values
- CT probabilities

Using a recipe we are able to do dark measurements:

- Single SPAD values
- DCR values
- CT probabilities

I INFN Bologna Riccardo Ricci

DCR measurements

We can test also BSI devices, taking into account that:

- BSI has very small signal
- 5-6 OV required to "see" clearly a signal
- High OV = high CT probability

A possible solution is a low pass filter @20 MHz but it changes real amplitude

19

Preliminary laser measurements:

I INFN Bologna

Riccardo Ricci

Laser ON Entries Entries 10000 400 22.85 Mean 1st SPAD Fit: Std Dev 15.88 350 Single SPAD = 10.50 ± 0.02 mV Probability (%) $\sigma = 0.77 \pm 0.01 \text{ mV}$ 1st SPAD 300 χ^2 /ndf = 1.21 2nd SPAD Fit: 250 Single SPAD = 21.01 ± 0.03 mV 2nd SPAD $\sigma = 1.22 \pm 0.03 \text{ mV}$ 20 200 χ^2 /ndf = 2.64 3rd SPAD Fit: 3rd SPAD 150 Single SPAD = 31.20 ± 0.05 mV $\sigma = 1.40 \pm 0.05 \text{ mV}$ 100 10 χ^2 /ndf = 2.07 50 0 20 30 10 50 60 70 80 40 Amplitude (mV)

- Example with an Hamatsu sensors @42V
- measurements of amplitude distribution
- RMS + SNRs
- Poissonian distribution
- Integrated charge

Preliminary laser measurements

21

epit Introduction

- A digitizer converts analog signals into digital data for processing and analysis
- The CAEN DT5742B is a 12-bit, 5 GS/s digitizer based on a DRS4 (Domino Ring Sampler) chip
- Designed for fast waveform acquisition, equipped with 16+1 channels for digitization (1 can be used as fast trigger) + external trigger (NIM)
- Light-weight solution which can become useful in different environments
- Full Scale Range: 1 Vpp
- It comes from CAEN with dedicated C Libraries
- Now in ePIC-Lab Irnerio

epit DRS4 chip

- The DRS4 (Domino Ring Sampling 4) is the 4th generation of an ASIC chip designed for high-speed digitization of signals.
- Based on a **switched-capacitor array**, where analog voltages are temporarily stored in capacitors before being digitized.
- Each channel has 1024 storage cells acting as a circular buffer. A fast sequence of write pulses allows the recording of analog waveforms in the capacitors at high frequency, which can later be read out and digitised via ADCs at a much lower speed
- Sampling speed up to **5 GS/s** (minimum 750 MS/s)
- Requires calibration to correct non-uniformities and offsets introduced by variations in capacitor properties and charge injection effects.

Example setup and first tests

Minimal setup:

- CAEN Digitizer DT5742 (connected to Linux PC via USB)
- AimTTi 2-channel pulse generator (one ch connected as fast trigger*, the other ch as signal)
- Data visualization: CAEN Wavedump program to check if the DGZ was working properly

*trg channel which is also being digitized

First signal from a SiPM

SiPM setup:

- CAEN Digitizer DT5742 (connected to Linux PC via USB)
- AimTTi 2-channel pulse generator to provide trigger signal*
- SiPM and related setup (AimTTi PW supplies to provide bias to the sensor an power to the amplifier)
- Data visualization: python code working with CAEN Libraries or a modified (rewritten version) of wavedump

"Oscilloscope"- like Graphical User Interface

- Possible using few Python libraries to treat data as "live" by updating the plot at each N events/waveforms
- Progressing (now priority given to calibration)
- Trigger: software or sent from pulser

Pulser signal

PRS4 Calibration

- The digitizer has pre-loaded calibration done by CAEN in its flash memory, but a more fine tuning is needed
- The ADCs should be calibrated:
 - a. as a function of the input voltage, given a known source
 - b. also some time-dependent calibration has to be done
- To properly calibrate the data, it is probably needed to keep track of the index of the first read cell (first cell != cell_0, due to the ring sampling structure).
- This approach should allow event-by-event reconstruction of the correct cell index, ensuring accurate time alignment.
- Attempting calibration with pulser (ongoing) but might not be enough (see backup). Checks ongoing!

 \rightarrow we are observing some strange DC offsets at 0 depending on pulser ON or OFF state. Thus we should take into account for once doing/applying calibration

Calibration fit for one cell

Typical OV line before calibration

DGZ Scheme

FRONT PANEL

28

Riccardo Ricci | INFN Bologna

ADCs Calibration - pulser specs

24.8 Outputs 24.8.1 Main Output

Amplitude:	100mVpp to 10Vpp 50 Ω into 50 Ω 200mVpp to 20Vpp 5 Ω into 50 Ω or 50 Ω into open circuit
Amplitude Accuracy:	1.5% ±5mV at 1kHz 50 Ω into 50 Ω
DC Offset Range:	±5V. DC offset plus signal peak limited to ±5V from 50 Ω into 50 Ω
	$\pm 10V.$ DC offset plus signal peak limited to $\pm 5V$ from 5Ω into 50Ω or 50Ω into open circuit
DC Offset Accuracy:	Typically 1% ±50mV.
Resolution:	3 digits or 1mV for both Amplitude and DC Offset.
Source Impedance	5Ω or 50Ω selectable

PRS4 Calibration

- ADC value of a channel plotted as a function of the delay between each triggers
- The function describing this behaviour could be (to be verified)

f = p0 - p1 * exp(x /p2)

