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Radiative Symmetry Breaking (RSB)

We start from the most general no-scale Lagrangian:

Lns = −1

4
FA
µνF

µν
A +

1

2
DµϕaD

µϕa + ψ̄ji /Dψj −
1

2
(Y a

ijψiψjϕa + h.c.)− Vns(ϕ),

Dµϕa = ∂µϕa + iθAabV
A
µ ϕb, Dµψj = ∂µψj + itAjkV

A
µ ψk,

Vns(ϕ) =
λabcd
4!

ϕaϕbϕcϕd.
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Radiative Symmetry Breaking (RSB)

At quantum level the couplings depend on the RG energy µ, there may be some specific
value µ = µ̃ at which the potential Vns(ϕ) develops a flat direction parametrized as
ϕa = χνa

V (χ) =
λχ(µ)

4
χ4, λχ(µ) ≡

1

3!
λabcd(µ)νaνbνcνd,

such that λχ(µ̃) = 0, λijkl(µ̃)νiνjνk = 0 (flat direction).

The one-loop effective potential at zero temperature is

Vq(χ) =
λχ(µ)

4
χ4 +

βλχ

4

(
log

χ

µ
− 1

4

)
χ4, βλχ ≡ µ

dλχ
dµ

.

Hierarchy of Scales
The RG running is logarithmic: starting with order-one value of λχ(µ) at some high-energy
scale µ, the value µ̃ at which λχ(µ̃) = 0 is typically exponentially large, generating
exponentially large hierarchies in a natural way.
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Radiative Symmetry Breaking (RSB)

Setting µ = µ̃ we obtain λχ = 0, i.e.

Vq(χ) =
β̄

4

(
log

χ

χ0
− 1

4

)
χ4,

β̄ ≡ [βλχ ]µ=µ̃, χ0 ≡
µ̃

e1/4+as
.

When the conditions, {
λχ(µ̃) = 0 (flat direction)
βλχ(µ̃) > 0 (minimum condition)

are fulfilled χ0 is the zero temperature vacuum-expectation value of χ and is the new
absolute minima of V (χ)

the fluctuation around χ0 have mass m2
χ = β̄χ2

0
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Radiative Symmetry Breaking and EW scale generation

The non trivial minimum can generically break global and/or local symmetries and thus
generate the particle masses, where χ0 plays the role of symmetry breaking scale

Lχh ≡ 1

2
λabϕaϕb|H|2, λχh(µ) ≡ λab(µ)νaνb.

RG improving and setting µ = µ̃

LχH =
1

2
λχH(µ̃)χ

2|H|2, λχH(µ̃) > 0,

evaluated at the minimum
µ2h =

1

2
λχh(µ̃)χ

2
0.
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First Order Phase Transitions (FOPT)

FOPT can occur in the early Universe when
the temperature T drops below a critical
value Tc

The finite temperature effective potential
V (χ, T ) develops a new stable minima
(true vacuum), while the old minima
becomes metastable (false vacuum)

The false vacuum eventually decay in the
true vacuum

The false vacuum decay manifest as the
nucleation of true vacuum bubbles in a
background of false vacuum
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Effective thermal potential

Effective Thermal Potential

Veff(χ, T ) = Vq(χ) +
T 4

2π2

∑
b

nbJB(m
2
b(χ)/T

2)− 2
∑
f

JF (m
2
f (χ)/T

2)

+ Λ0,

JB(x) ≡
∫ ∞

0
dp p2log

(
1− e−

√
p2+x

)
= −π

4

45
+
π2

12
x− π

6
x3/2 − x2

32
log
(
x

aB

)
+O(x3),

JF (x) ≡
∫ ∞

0
dp p2log

(
1 + e−

√
p2+x

)
=

7π4

360
− π2

24
x− x2

32
log
(
x

aF

)
+O(x3),

aB = 16π2exp(3/2− 2γE), aF = π2exp(3/2− 2γE).
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Vacuum Decay

Decay rate of the false vacuum per unit of volume (time independent bounce)

Γ ≈ T 4exp(−S3/T ),

S3 ≡ 4π

∫ ∞

0
dr r2

(
1

2
χ′2 + V̄eff(χ, T )

)
= −8π

∫ ∞

0
dr r2V̄eff(χ, T ),

χ′′ +
2

r
χ′ =

dV̄eff
dχ

, χ′(0) = 0, lim
r→∞

χ(r) = 0, V̄eff(χ, T ) = Veff(χ, T )− Veff(0, T ).
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Properties of Phase Transition in RSB models

Phase Transitions in RSB models are
always FOPT

FOPTs in RSB feature always a
supercooling phase, i.e. the temperature
drops much below Tc before the bubble
nucleation became effective.
This ensures that thermal effect do not
spoil perturbation theory

Supercooling implies a new stage of
inflation

FOPT in RSB models are always strong,
the PT release a large amount of energy
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Supercool Expansion

Supercool Expansion (LO)
If supercooling is strong enough in a generic theory of the form Lns, to good accuracy, the full
effective action for relevant values of χ can be described by three and only three parameters:
χ0, β̄ and g defined as

g2χ2 ≡
∑
b

nbm
2
b(χ) +

∑
f

m2
f (χ).

The conditions for supercool expansion is verified if

ϵ ≡ g4

6β̄logχ0

T

is small.

Francesco Rescigno (Tor Vergata, INFN Roma2) 13 / 47



Supercool Expansion

The LO of this expansion corresponds to approximate the effective potential as

JB(x) ≈ JB(0) +
π2

12
x, JF (x) ≈ JF (0)−

π2

24
x,

Supercool Expansion (LO)

V̄eff(χ, T ) ≈
m2(T )

2
χ2 − λ(T )

4
χ4, S3 ≈ c3

m

λ
,

where

m2(T ) ≡ g2T 2

12
, λ(T ) ≡ β̄log

χ0

T
, c3 = 18.8973 . . .
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Supercool Expansion

It is possible to calculate several FOTP parameters:
▶ Nucleation temperature: Defined as the temperature Tn for which

Γ(Tn) ≈ H(Tn)
4 ≡ H4

n.

▶ Inverse duration: Defined as

β ≡
[
1

Γ

dΓ

dt

]
tn

.
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Supercool Expansion

The NLO expansion includes higher order terms in the expansion of the thermal function

JB(x) ≈ JB(0) +
π2

12
x− π

6
x3/2, JF (x) ≈ JF (0)−

π2

24
x.

The NLO effective potential includes a perturbative cubic term

V̄eff(χ, T ) ≈
m2(χ)

2
χ2 − k(T )

3
χ3 − λ(T )

4
χ4

k(T ) ≡ g̃3T

4π
, g̃3χ3 ≡

∑
b

nbm
3
b(χ), g̃ ≤ g.
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Improved Supercool Expansion

In general, when ϵ ∼ 1, in the effective potential the cubic term cannot be treated as a
perturbation (i.e. the term of order x3/2 is not perturbative in the expansion of the
thermal functions)

However we can treat the terms beyond the quartic as perturbation

We can rewrite the effective potential and the 3d euclidean action at the LO of the
Improved Supercool Expansion as

Improved Supercool Expansion (LO)

V̄eff(χ, T ) ≈
m2(χ)

2
χ2 − k(T )

3
χ3 − λ(T )

4
χ4,

m2(T ) ≡ g2T 2

12
, λ(T ) ≡ β̄log

χ0

T
, k(T ) ≡ g̃3T

4π
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(Improved) Supercool Expansion: Results

Inverse duration β/Hn, nucleation temperature

β

Hn
≈ a

log2(χ0/Tn)
− 4, (Supercool expansion LO)

Tn ≈ χ0 exp

(√
c2 − 16a− c

8

)
, (Supercool expansion LO)

β

Hn
≈ π3g5

6
√
3g̃8

(4π)2β̄

g̃4
(−F ′(λ̃n))− 4, (Improved supercool expansion LO)

Tn ≈ χ0 exp

(
−12g̃6/g2

(4π)2β̄
λ̃n

)
, (Improved supercool expansion LO)

a ≡ c3g√
12β̄

, c ≡ log
4
√
3M̄P√
β̄χ0

+
3

2
log

a

2π
, λ̃n needs numerical calculation.
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Late Blooming Mechanism
Small Overview

Phys.Rev.D 105 (2022) 2, L021303, J. Liu, L. Bian, R. G. Cai, Z. K. Guo and S. J. Wang

Vacuum decay is a probabilistic process

There can be some regions that persist in
the false vacuum for a longer time than
the background

These regions can eventually collapse into
Primordial Black Holes (PBH) if the
mass excess reaches the critical value δc

Late Blooming Mechanism
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Late Blooming Mechanism

Expanding the vacuum decay rate as

Γ(t) = Γ(tn)exp(β(t− tn) + β2(t− tn)
2 + ...) ≈ H4

ne
β(t−tn),

one can characterize the late blooming mechanism in supercooled 1OPT:
Phys.Rev.D 110 (2024) 4, 043514, arXiv:2305.04942 [hep-ph], Y. Gouttenoire, T. Volansky

Collapse Probability, PBH Fraction and PBH Mass

Pcoll ≈ exp

[
−aP

(
β

Hn

)bP

(1 + δc)
cP

β
Hn

]
, for α =

(
Teq
Tn

)4

≫ 1, δc ≃ 0.45,

aP ≈ 0.5646, bP ≈ 1.266, cP ≈ 0.6639,

fPBH ≈ Pcoll

6.0× 10−12

Teq
500GeV

, MPBH ≈M⊙

(
20

g∗(Teq)

)1/2(140MeV
Teq

)2

.
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Late Blooming Mechanism

It is also possible calculate the RMS Kerr Parameter of the PBHs
arXiv:2409.06494 [gr-qc], I. K. Banerjee, T. Harada

PBH Initial Spin√
⟨a2∗⟩ ≈

2.1× 10−3

23.484− 1.25 log10(fPBH)− 1.25 log10
(
ΩCDM
0.26

)
− 0.625 log10

(
MPBH
1015g

) .
aK ≡ J

Mc
, a∗ ≡

aKc
2

GNM
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Late Blooming & Radiative Symmetry Breaking Models

We can express the physical parameters of the Late Blooming Mechanism in terms of (χ0, β̄, g, g̃)

Late Blooming & Radiative Symmetry Breaking Models

T 4
eq ≈ 15β̄χ4

0

8π2g∗(Teq)
, MPBH ≈M⊙

(
2π2

3β̄

)1/2(
280MeV
χ0

)2

, Hn ∼ HI ≈
√
β̄χ2

0

4
√
3M̄P

,

β

Hn
≈ a

log2(χ0/Tn)
− 4 (Supercool expansion LO),

β

Hn
≈ π3g5

6
√
3g̃8

(4π)2β̄

g̃4
(−F ′(λ̃n))− 4 (Improved supercool expansion LO).

Then we can calculate:

fPBH(χ0, β̄, g, g̃),
√

⟨a2∗⟩(fPBH(χ0, β̄, g, g̃),MPBH(Teq(χ0, β̄))).
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Late Blooming & Radiative Symmetry Breaking Models

Improved supercool expansion at LO
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FOPT in the B-L Model

U(1)B−L model phenomenology can be described with Improved Supercool Expansion

L =Lns
SM +DµA

†DµA+ N̄jiγµD
µNj −

1

4
B′

µνB
′µν

+

(
YijLiHNj +

1

2
yijANiNj + h.c.

)
− λa|A|4 + λah|A|2|H|2

The gauge group is SU(3)C × SU(2)L × U(1)Y × U(1)B−L
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FOPT in the B-L Model

To generate the EW scale, the flat direction should be a mixing of |H| and |A| with a small
mixing angle (χ is mostly |A|): we can then approximate the flat direction condition with
λa(µ̃) = 0

the one-loop RG equation for the quartic coupling λa

(4π)2µ
d

dµ
λa = 96g′41 − 48λag

′2
1 + 20λ2a + 2λ2ah + 2λaTr(yy†)− Tr(yy†yy†)

Neglecting λah and y (right-handed neutrino Majorana masses are taken below EW scale)

β̄ =
96g′41
(4π)2

The background dependent Z ′ mass is

MZ′(χ) = 2|g′1|χ
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FOPT in the B-L Model

The collective couplings are:

g = 2
√
3|g′1|, g̃ = 2

3
√
3|g′1| =

g
6
√
3
,

we get

β̄ =
2g4

3(4π)2

and

mχ =

√
2

3

g2

4π
χ0, Mh =

√
λahχ0.
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FOPT in the B-L Model

Improved Supercool at LO
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Conclusions

The (improved) supercool expansion is a powerful tool to study the phenomenology of
FOPT when there is enough supercooling

The FOPT phenomenology related to a general RSB model can be described by using just
few parameters (χ0, β̄, g, g̃)

We described using (improved) supercool expansion the production of PBH via late
blooming mechanism, and provided a model that can account for an appreciable fraction of
dark matter in the form of PBH
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Future perspectives

The supercooling leads to a period of inflation in the universe, after which reheating is
needed to heat the universe: can we describe it in a general way?

FOPT are related to several sources of particle production: bubble collision, reheating,
preheating. How can we describe these production mechanism in RSB models?

Is it possible to produce dark matter?
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Backup

Figure 1: Energy Densities Late blooming
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Backup

Figure 2: Density Contrast
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Backup

Figure 3: Hubble rate Late Blooming Mechanism
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Backup

Figure 4: Hubble Radius late blooming mechanism
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Supercool Expansion

The nucleation temperature Tn is obtained solving the equation

Γ(Tn) ≈ H4
n ≈ H4

I −→ cX − 4X2 − a ≈ 0

where HI =

√
β̄χ2

0

4
√
3M̄P

is the Hubble rate when the vacuum is still dominant respect the true
vacuum, and

X ≡ log
χ0

Tn
, a ≡ c3g√

12β̄
, c ≡ log

4
√
3M̄P√
β̄χ0

+
3

2
log

a

2π
.

Solving the equation we obtain

Tn ≈ χ0exp

(√
c2 − 16a− c

8

)
.
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Extending the validity of the supercool expansion

The supercool expansion is still valid for ϵ ∼ 1 only if the number of degrees of freedom N
with dominant coupling to the field χ is large

g ∼
√
Nτ, g̃ ≲ 3

√
Nτ −→ g̃3/g3 ≲ 1/

√
N

The cubic term in the effective potential gets suppressed by a factor ≲ 1/
√
N

1/X = 6β̄/ϵg4 is still small for ϵ ∼ 1

Truncating the small-x expansion of the thermal function up to order x3/2 because the
higher-order terms involve smaller and smaller coefficients
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Supercool Expansion

The inverse duration can be written as

β

Hn
≈
[
T
d

dT
(S3/T )− 4− 3

2
T
d

dT
log(S3/T )

]
T=Tn

≈ a

log2(χ0/Tn)
− 4− 3

2

1

log(χ0/Tn)
,

neglecting the last term
β

Hn
≈ a

log2(χ0/Tn)
− 4.
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Improved Supercool Expansion

In general, when ϵ ∼ 1, in the effective potential the cubic term cannot be treated as a
perturbation (i.e. the term of order x3/2 is not perturbative in the expansion of the
thermal functions)

However we can treat the cubic term as LO and the other higher order term as a
perturbation

We can rewrite the effective potential and the 3d euclidean action at the LO of the
Improved Supercool Expansion as

Ṽeff(ϕ, T ) =
1

2
ϕ2 − 1

3
ϕ3 − λ̃

4
ϕ4, S3 = −8πm3

k2

∫ ∞

0
dρ ρ2Ṽeff(ϕ, T ),

λ̃(T ) ≡ λm2

k2
=

(4π)2β̄

12 g̃6/g2
log(χ0/T ) ≥

2π2

9ϵ
.
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Improved Supercool Expansion

We are interested for values of λ̃ ∼ 1: for such values we can write S3 as
JHEP 02 (2023), 125, arXiv:2212.08085 [hep-ph], N. Levi, T. Opferkuch, D. Redigolo

S3 =
27πm3

2k2
1 + exp(−1/

√
λ̃)

1 + 9
2 λ̃

.

This expression reproduces the numerical calculation at the ∼ 1% level for the values of λ̃
we are interested in

The validity of this expression of S3 has been established in a model independent way
within the improved supercool expansion
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Improved Supercool Expansion

Solving the equation Γ(Tn) ≈ H4
n

a1 − a2λ̃ = F (λ̃) ≡ 1 + exp(−1/
√
λ̃)

2/9 + λ̃
,

a1 ≡
c c3k

3

3πaβ̄m2
, a2 ≡

4c3k
4

3πaβ̄2m4
.

We are interested in the smallest real and positive solution λ̃n(T ) ≡ λ̃(Tn) for which the
straight line a1 − a2λ̃ reaches F (λ̃) from below in increasing λ̃ (if it exist)

Following the same steps as before we can calculate β/Hn

β

Hn
≈ π3g5

6
√
3g̃8

(4π)2β̄

g̃4
(−F ′(λ̃n))− 4.
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Late Blooming & Supercool Expansion

The expansion

Γ(t) = Γ(tn)exp(β(t− tn) + β2(t− tn)
2 + ...) ≈ H4

ne
β(t−tn),

can be justified on the ground of the supercool expansion. Using:

dt = −dT/(TH) ≈ −dT/(THI) −→ T (t) ≈ Tne
−HI(t−tn),

for the supercool expansion at LO

S3
T

≈ c3
m

Tλ
=

c3g√
12β̄logχ0

T

≡ a

X + logTn
T

≈ a

X +HI(t− tn)
,

X ≡ log
χ0

Tn
,
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Late Blooming & Supercool Expansion

we get

Γ(t) ≈ T 4(t)exp(−S3/T (t)) ≈ T 4
nexp

(
− a

X +HI(t− tn)
− 4HI(t− tn)

)
.

Expanding for t around tn

1

1 + HI(t−tn)
X

= 1− HI(t− tn)

X
+

(
HI(t− tn)

X

)2

+ · · ·+ (−1)k
(
HI(t− tn)

X

)k

+ . . .

noting that HI = Heq/
√
2 = γ/(

√
3teq)

HI(t− tn)

X
=
γ(τ − τn)√

3X
, γ = 0.76329 . . . , τ ≡ t

teq
,
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Late Blooming & Supercool Expansion

As long as τ − τn is small respect to
√
3X/γ, Γ(t) ≈ H4

ne
β(t−tn) is a good approximation.

This holds also for the improved supercool expansion (ϵ ∼ 1 at T = Tn)

β̄ ∼ g4

(4π)2
(loop suppressed) −→ X ∼ 26 −→ γ√

3X
∼ 10−2
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Late Blooming & Supercool Expansion

Figure 5: Improved Supercool at LO
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Late Blooming & Supercool Expansion

Figure 6: Improved Supercool at LO
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Supercool expansion details

The dominant contributions to the bounce action S are those from field values around the
barrier.

Therefore, we first need to estimate the barrier size, which we can define as the field value

V̄eff(χb, T ) = 0

The log term inside Vq taking χ around χb

log
χb

χ0
− 1

4
= log

χb

T
− 1

4
+ log

T

χ0
≈ log

T

χ0
,

One then can show that for enough supercooling

χ2
b

T 2
≈ g2

6β̄ log χ0

T
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