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The common (back)ground - precision

measurements at the LHC

- The physics program of the LHC is
being more and more characterized as
a measurement one (indirect probe of
new physics)

Nothing excludes that the direct
detection of new states may show up
in the data at HL-LHC, but clearly this
possibility is not assured

- To properly estimate the significant of
a deviation in a precise measurement
(or the constraint to a BSM model),
the estimation of the theory
uncertainty is also required

— D w

- We have also both worked, at different

Both Marco and me have experience
on different aspects of this program

times, on a Bayesian approach to
Missing Higher Order Uncertainties
(MHOUSs)

Lorenzo Paparella, a master student at
Sapienza, worked on this during his
thesis
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An example: the W mass measurement

- My determination at hadron collider is performed indirectly by measuring
observables that are strongly sensitive to W mass

- That makes it heavily dependent on having a refined theory framework

- This fact is reflected in the uncertainty budget of the currently available
determination

- A huge effort from the theory community contributes directly to the exp. effort.

- ATLAS — my = 80366.5 & 9.84tat =+ 12.50xp MeV
- CMS — My = 80360 & 2.4gtat + 9.65yst. MeV

LHCb — my, = 80354 %+ 23gtat =+ 10exp £ 7iheory £ 9pDF MeV
- CDF Il — my = 80433.5 + 6.4gtat + 6.9cxp tmod. syst. MeV

DO — My = 80375.5 % T1stat =+ 20exptmod. syst. MeV
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The importance of an accurate theory framework

( - CMS — my = 80360 = 2.4gtat % 9.65yst. MeV ]
Systematic uncertainties W-like m, — myy
Muon efficiency 3127 3658

Muon eff. veto - 531
Muon eff. syst. 343
Muon eff. stat. 2784
Nonprompt background - 387
Prompt background 2 3
Muon momentum scale 338
L1 prefire 14
Luminosity 1
PDF (CT18Z) 60
Angular coefficients 177 353
W MINNLOgs pig, ug - 176
Z MINNLOps pig, pir 176
PYTHIA shower kt 1
pY modeling 22 32
Nonperturbative 4 10
Perturbative 4 8
Theory nuisance parameters 10
¢, b quark mass 4
Higher-order EW 6 7
Z width 1
Z mass 1
W width - 1
W mass - 1
sin? 6,y 1
Total 3750 4859
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The future - the next collider
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[Courtesy of J. de Blas] PRELIMINARY
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What is a theory uncertainty?

The so-called theory uncertainties affecting a measurement at a collider are of
different kinds:

Theory uncertainties \

Missing Higher Order Uncertainties (MHOUs) due to the limited order of the
perturbation expansion

Parametric uncertainties due to the uncertainty in the physical parameter
determination (e.g. alpha, as)

PDF uncertainties (exp.; model; MHOUs)
Perturbative modelling uncertainties: e.g. different parton shower algorithm

Non-perturbative uncertainties, such as intrinsic ky, hadronisation, underlying
event
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Missing higher order uncertainties

—UED )

- The perturbative expansion of an observable known up to order k is

k
0@ 1) = 3" al(1)en(Q,p)  (known)

n=l

- Qs the hard scale of the process, u represents the unphysical scale(s) (e.g. the
renormalization scale) from which the truncated perturbative expansion
depends. We assume it set at the value Q

- The remainder of the series expansion is unknown and it is our MHOU

[e]

Ap= " al(Q)n(Q) ~ ooy =72
n=R+1
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Scale Variation

Scale variation N

- Vary the unphysical scale(s) . around the central scale Q by an arbitrary factor r

Different prescriptions used in the literature.
1. Scan: vary u between Q/r and r x Q and use the maximum/minimum
value of the observable to define the uncertainty
2. Extrema: Use the maximum/minimum of the value of the observable
obtained for u =r x Q,Q/r

Issue: the factor ris arbitrary and the interval obtained has no statistical
meaning
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Benchmark performed by considering a wide set of observables and check whether
the next (know in this case) order is inside the band obtained with the scale variation
(SV) prescription

Success rate Success rate
1.0¢ 1.0¢

0.8f 0.8¢
0.6 0.6 - LO
- - NLO
0.4 0.4
0.2 0.2
- : . : . T - : . . . ST
2 3 4 5 6 7 8 2 3 4 5 6 7 8

SV with just the three finite choices SV with the full scan in the interval
{a/r.Q,rxQ} [Q/r,rx Q]

[EB, M. Cacciari, A. Guffanti, L. Jenniches "14]
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Does it work?

Canonical scale variation
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[G. Salam]
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The Bayesian Approach
‘

- Suppose there is an upper bound on the coefficients magnitude and call it ¢
- The priors for the model are then given by

1 (1 if|en| <C
2C

flenl®) = 52
- 1 0 if c
fe(lnc): X|Ing|< | Ine| ! lC”‘ -
2| Ine| . _ _
f{ci,i € 13e) = [ [Acilo)
icl
Bayesian inference gives then the uncertainty interval posterior

nc> 1 1 if |Ay] < oft'T,

ne+1 1, | —————— if|A k+1g
c+ 205" Cpp (1251 (kT Tggyner if [Ap| > a5 Tk

FARCL - ) = (

where nc = k — [+ 1and ¢, = max(c, ..., Cg)

Intervals have a statistical meaning in term of Degree of Belief (DoB)
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A family of different models

eometric and abc models

2 =0k D ok(k) B0 (1) (1) = ci(p)a (1)
k>0
CH model assumes that d), behave as afn* [Cacciari,Houdeau 1105.5152]

Sio(p) 10e(p)| < ealn®,  n=1

with one hidden parameter ¢, and 7 describing a possible power growth of the coefficients ¢y,

BCGJ adds a factorial growth [Bagnaschi, Cacciari,Guffanti,Jenniches 1409.5036]
o (p) 10k (1)] < eafn®k!

with n is determined from a survey over various observables

My proposal: geometric behaviour model [Bonvini 2006.16293]
6% (1)) < ca®

depends on two hidden parameters ¢, a, it accounts for a possible power growth of the
coefficients within the model

Asymmetric variant, called abe model [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]
ok(p) —ba"| < ca®

depends on three hidden parameters a, b, ¢, it also accounts for a possible sign pattern
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A family of different models

Comparison among approaches to MHO

CH | BCGJ B DHMS | B B
Csv geo abe sca | constr-sca

power series v v v v
orders get smaller v v v
scale dep ~ MHO v v v
scale dep reduce v
reliable v v v v
not so arbitrary V)| ) v v v v/
probabilistic v v v v v v

CSV:  Canonical Scale Variation
CH:  [Cacciari,Houdeau 1105.5152]
BCGJ:  [Bagnaschi,Cacciari,Guffanti,Jenniches 1409.5036]
B:  [Bonvini 2006.16293]
DHMS:  [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]

See also [David,Passarino 1307.1843] [Forte,Isgrd,Vita 1312.6688] [Ghosh,Nachman,Plehn,Shire, Tait, Whiteson 2210.15167]

[McGowan,Cridge, Harland-Lang, Thorne 2207.04739] [Tackmann 2411.18606] [Lim,Poncelet 2412.14910]
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Correlations in theory uncertainties

Scale variation

- Theory correlations may arise between different bins of the same observables;
between observables of the same process; between different processes.

- The understanding is that these correlations are due to same physics being at
play
In these case also the theory uncertainties will be correlated - but how to
estimate the correlation?

One possibility is to use the unphysical scale(s) as the correlation parameter -
but does it make sense?
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(1/0dx/dp?) / (1/od/dp}")

Ratio to Py8 Ratio to Py8

Ratio to Py8

Correlations matter: the pZ/pY¥ ratio in QCD

RadISH+NNLOJET
13 TeV, pp — Z,WH (= £¢ 2" +m)+X
NNPDF3.1 (NNLO)

* NNLO

= NLL+NNLO

== = NNLL+NLO
t  Pythia.AZ

0.8 - T 1
1 10 100
p{
[Bizon et al. "19, 1905.05171]
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RadISH+NNLOJET
13 TeV, pp = WE(— €5 + 1) + X
NNPDF3.1 (NNLO)
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Correlations matter: Z angular coefficients

NNLOJET pp— Z+X, y, inclusive Vs=8TeV NNLOJET pp—> Z+X, y, inclusive Vs=8TeV
T T

E - NNLO central - == NLO central

08 [ NLO uncorrelated = O8E 7] NNLO uncorrelated E
0.6 Il NLO correlarea _' 0.6 Il NNLO correlated I
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[Gauld et al. "17, 1708.00008]
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Theory nuisance parameters

Application to pr Spectrum

Step 2: Use pr factorization to organize (resum) the double series for f,.m,
do(©®

= [H x B.® B, ® S|(asi L = Inpr/mz)
dpr

@ Each function F' = { H, B, S} has exponential form (solution of its RGE)

L
F(a, L) = F(a) exp/ dr’ {Tles ()] L + vrlau(L)]}
0
» Boundary conditions
F(as) =Fo+as Fi + a2 F; + 0(a?)
» Anomalous dimensions
I(as) = as[To + as T1 + a2 + O(ad)]

Yr(as) = aslvo + oy + a3 2 + O(al)]

= Entire problem reduces to several scalar series F'(a), I'(as), vr(as)

2024-02-26 | Frank Tackmann 18/29.
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Theory nuisance parameters

NP Uncertainties in Drell- pr Spectrum

relative impact for Z pr

relative impact for W pr
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@ N3+ILL: Full NLL resummation with highest-order boundary conditions

and anomalous dimensions as TNPs
@ Important caveats:

» Beam boundary conditions Bg;: Using fn = (0 & 2) x fire

n

» Hard boundary conditions H: No singlet corrections (enter only Z not W)
> DGLAP splitting functions are noncusp anom. dimensions, not varied here

v Correlations across pr and between W and Z are correctly captured

2024-02-26 | Frank Tackmann
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Theory nuisance parameters

NP Uncertainties in Drell- pr Spectrum

relative impact for W/Z relative impact for W/Z
2.0 T 1.0 T
L5 SCETIb N*HLL W/Z (8 TeV) | SCETIib N*H'LL W/Z (8 TeV)
"I PRELIMINARY MSHTaNSLO, Q=mz, ¥ =0 PRELIMINARY MSHTaN3LO, Q=mz, ¥ =0
1.0F E 0.5, B

rel. difference [%)]
rel. difference [%)]
o
=)

N R I
-0 5 10
qr [GeV] qr [GeV]

@ N3+ILL: Full NLL resummation with highest-order boundary conditions
and anomalous dimensions as TNPs
@ Important caveats:
» Beam boundary conditions Bg;: Using fn = (0 & 2) x fire

» Hard boundary conditions H: No singlet corrections (enter only Z not W)
> DGLAP splitting functions are noncusp anom. dimensions, not varied here

v Correlations across pr and between W and Z are correctly captured
2024-02-26 | Frank Tackmann 28/29.
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Issues with Tackamann’s approach

0.7 T T 0.7 T T T T

0.65_ Tentries = 85 - fa(ng =5) _f 0.65— Tentries = 98 Tu(ng = 5) _f

F p=—0.16 £ O E [ p=—-017+0. E

E 0.5F 0 = 0.9+ 0.07 _ 4 £ 05F o =1.40.07 =

g - 1 8 E

S 0.4 W = © 0.4F =

g M i ¢ E
§ 0’3;_ - _g ::': 0'35_ _g [Tackmann '24]

£ 0.2f 4 £ o.2f ¥ E

0.1 T E 0.1 E

0.05 . : - 0.05 -

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

4 oy

- Tackmann'’s defines in arbitrary way the probability
distributions of the theory nuisance parameters

- However these are perturbative objects — use the
Bayesian approach to determine these distributions!
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Our correlation setup

Consider the threshold resummation for a color singlet, i.e Higgs or Drell-Yan

MZ
/ drr"S(7) = PDFs(N) x go(as) exp®@s ) with 7 = -~
and where
N M?(1—2)? du?
e M) = [ a5 ([ T2h(asu) + Dles((1 - 27))
_ 2

A(OCS) = OésA‘\ —+ OlgAz + chAg + O[S
D(as) = asDi + aSDz + D3 +.
go(as) = asgor + a2gor + agos + - ..

- Apply the Bayesian model to perturbative elements A,D and gy to obtain
P(A, D, go|mathrmknownorders)

- Add a totally uncorrelated piece for the non-resummed part
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Joint distributions between K-factors for gg — H at

different energies

ggH - Joint probability distribution for K-factors
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ggH - Joint probability distribution for K-factors

el
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Correlation matrix of K-factors for gg — H at different

energies

ggH - Correlation matrix for K-factors ggH - Correlation matrix for K-factors

0.9
0.8
0.7
0.6
0.5
10
% [TeV]
without the uncorrelated fixed order piece with the uncorrelated fixed order piece
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Joint probability between DY and ggH

ggH-DY - Joint probability distribution for K-factors

10
1
s
2
¥ 0.1
€
s
2
X
0.01
0.001

KggH(ve=1 TeV)

with the uncorrelated fixed order piece
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Outlook

—CHED )
Built a collaborative relationship between the LNF and Roma 1 nodes focused
on SM precision measurements

- The work in progress is focused on building a Bayesian model for theoretical
uncertainty correlations

- The consistent modelling of these correlations is important for the precision
physics program at the LHC, and future colliders
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