A Bayesian bridge between INFN LNF and INFN Roma 1

Emanuele A. Bagnaschi (INFN LNF)

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

18 May 2025 ENP Collaboration meeting

U. Roma 1

In collaboration with M. Bonvini (INFN Roma 1) and L. Papparella (U. Roma 1) 💿 🔤 emanuel

emanuele.bagnaschi@cern.ch

The common (back)ground – precision measurements at the LHC

The context

- The physics program of the LHC is being more and more characterized as a measurement one (indirect probe of new physics)
- Nothing excludes that the direct detection of new states may show up in the data at HL-LHC, but clearly this possibility is not assured
- To properly estimate the significant of a deviation in a precise measurement (or the constraint to a BSM model), the estimation of the theory uncertainty is also required

The team

- Both Marco and me have experience on different aspects of this program
- We have also both worked, at different times, on a Bayesian approach to Missing Higher Order Uncertainties (MHOUS)
- Lorenzo Paparella, a master student at Sapienza, worked on this during his thesis

An example: the W mass measurement

- M_W determination at hadron collider is performed indirectly by measuring observables that are strongly sensitive to W mass
- That makes it heavily dependent on having a refined theory framework
- This fact is reflected in the uncertainty budget of the currently available determination
- A huge effort from the theory community contributes directly to the exp. effort.

- ATLAS $\rightarrow m_W = 80366.5 \pm 9.8_{\text{stat}} \pm 12.5_{\text{exp}} \text{ MeV}$
- CMS $\rightarrow m_W = 80360 \pm 2.4_{\text{stat}} \pm 9.6_{\text{syst.}} \text{ MeV}$
- LHCb $\rightarrow m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$
- CDF II $\rightarrow m_W = 80433.5 \pm 6.4_{\text{stat}} \pm 6.9_{\text{exp+mod. syst.}} \text{ MeV}$
- $D0 \rightarrow m_W = 80375.5 \pm 11_{\text{stat}} \pm 20_{\text{exp+mod. syst.}} \text{ MeV}$

The importance of an accurate theory framework

· CMS $\rightarrow m_W = 80360 \pm 2.4_{\rm stat} \pm 9.6_{\rm syst.} \text{ MeV}$

Systematic uncertainties	W-like m-	111	
Muon officiency	3127	3658	
Muon off voto	5127	531	
Muon eff. svet	- 3/3	551	
Muon off stat	343		
Nonnonent hadronound	2/84		
Nonprompt background	_	387	
Prompt background	2	3	
Muon momentum scale	338		
L1 prefire	14		
Luminosity	1		
PDF (CT18Z)	60		
Angular coefficients	177	353	
W MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	-	176	
Z MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	176		
PYTHIA shower $k_{\rm T}$	1		
$p_{\rm T}^{\rm V}$ modeling	22	32	
Nonperturbative	4	10	
Perturbative	4	8	
Theory nuisance parameters	10		
c, b quark mass	4		
Higher-order EW	6	7	
Z width	1		
Z mass	1		
W width	-	1	
W mass	-	1	
$\sin^2 \theta_W$	1		
Total	3750	4859	

A Bayesian bridge between LFN and INFN Roma 1

The future - the next collider

Future colliders

- The past strategy update indicated a e^+e^- Higgs factory the one priority for accelerator based physics
- Aside from the characterization of the Higgs, these machines will perform precise EW measurements, some of which may be theory limited
- More refined theory predictions will be required, along with an estimation of the remaining uncertainties

[Courtesy of J. de Blas] PRELIMINARY

What is a theory uncertainty?

The so-called theory uncertainties affecting a measurement at a collider are of different kinds:

Theory uncertainties

- Missing Higher Order Uncertainties (MHOUs) due to the limited order of the perturbation expansion
- Parametric uncertainties due to the uncertainty in the physical parameter determination (e.g. *alpha*, α_s)
- PDF uncertainties (exp.; model; MHOUs)
- · Perturbative modelling uncertainties: e.g. different parton shower algorithm
- Non-perturbative uncertainties, such as intrinsic k_T , hadronisation, underlying event

Missing higher order uncertainties

MHOUs

• The perturbative expansion of an observable known up to order k is

$$O_k(Q,\mu) = \sum_{n=l}^k \alpha_s^n(\mu) c_n(Q,\mu)$$
 (known)

- *Q* is the hard scale of the process, μ represents the unphysical scale(s) (e.g. the renormalization scale) from which the truncated perturbative expansion depends. We assume it set at the value *Q*
- The remainder of the series expansion is unknown and it is our MHOU

$$\Delta_k = \sum_{n=k+1}^{\infty} \alpha_s^n(Q) c_n(Q) \simeq \alpha_s^{k+1} c_{k+1} = ?$$

Scale Variation

Scale variation

- Vary the unphysical scale(s) μ around the central scale Q by an **arbitrary** factor r
- Different prescriptions used in the literature.
 - 1. Scan: vary μ between Q/r and $r \times Q$ and use the maximum/minimum value of the observable to define the uncertainty
 - 2. Extrema: Use the maximum/minimum of the value of the observable obtained for $\mu = r \times Q, Q/r$
- Issue: the factor *r* is arbitrary and the interval obtained has **no** statistical meaning

Does it work?

Benchmark performed by considering a wide set of observables and check whether the next (know in this case) order is inside the band obtained with the scale variation (SV) prescription

[EB, M. Cacciari, A. Guffanti, L. Jenniches '14]

Does it work?

Canonical scale variation

[G. Salam]

The Bayesian Approach

Scale variation

- Suppose there is an upper bound on the coefficients magnitude and call it \bar{c}
- The priors for the model are then given by

$$f_{\epsilon}(\ln \bar{c}) = \frac{1}{2|\ln \epsilon|} \chi_{|\ln \bar{c}| \le |\ln \epsilon|} \qquad \qquad f(c_n|\bar{c}) = \frac{1}{2\bar{c}} \begin{cases} 1 & \text{if } |c_n| \le c \\ 0 & \text{if } |c_n| > \bar{c} \end{cases}$$
$$f(\{c_i, i \in l\}|\bar{c}) = \prod_{i \in l} f(c_i|\bar{c})$$

• Bayesian inference gives then the uncertainty interval posterior

$$f(\Delta_k|c_1,\ldots,c_k) \simeq \left(\frac{n_c}{n_c+1}\right) \frac{1}{2\alpha_s^{k+1}\overline{c}_k} \begin{cases} 1 & \text{if } |\Delta_k| \le \alpha_s^{k+1}\overline{c}_k \\ \frac{1}{(|\Delta_k|/(\alpha_s^{k+1}\overline{c}_k)^{n_c+1}} & \text{if } |\Delta_k| > \alpha_s^{k+1}\overline{c}_k \end{cases}$$

where $n_c = k - l + 1$ and $\overline{c}_k = \max(c_l, \dots, c_k)$

• Intervals have a statistical meaning in term of Degree of Belief (DoB)

A family of different models

Quick recap: Cacciari-Houdeau, geometric and *abc* models

$$\Sigma = \Sigma_{\mathsf{LO}}(\mu) \sum_{k \ge 0} \delta_k(\mu) \qquad \qquad \Sigma_{\mathsf{LO}}(\mu) \delta_k(\mu) = c_k(\mu) \alpha_s^k(\mu)$$

CH model assumes that δ_k behave as $lpha_s^k \eta^k$

[Cacciari,Houdeau 1105.5152]

$$\Sigma_{ ext{LO}}(\mu) \left| \delta_k(oldsymbol{\mu})
ight| \leq ar{oldsymbol{c}} \, lpha_s^k \eta^k, \qquad \eta = 1$$

with one hidden parameter $ar{c}_{\text{,}}$ and η describing a possible power growth of the coefficients c_{k}

BCGJ adds a factorial growth

[Bagnaschi, Cacciari, Guffanti, Jenniches 1409.5036]

$$\Sigma_{ extsf{LO}}(\mu) \left| \delta_k(oldsymbol{\mu})
ight| \leq ar{c} \, lpha_s^k \eta^k k!$$

with η is determined from a survey over various observables

My proposal: geometric behaviour model

[Bonvini 2006.16293]

$$|\delta_k(\mu)| \leq c \, a^k$$

depends on two hidden parameters $c, a, \, {\rm it}$ accounts for a possible power growth of the coefficients within the model

Asymmetric variant, called abc model

[Duhr,Huss,Mazeliauskas,Szafron 2106.04585]

$$\left| \delta_k(\pmb{\mu}) - \pmb{b} \, \pmb{a}^k
ight| \leq c \, \pmb{a}^k$$

depends on three hidden parameters a, b, c, it also accounts for a possible sign pattern

A Bayesian bridge between LFN and INFN Roma 1

A family of different models

Comparison among approaches to MHOU

	csv	СН	BCGJ	B geo	DHMS abc	B sca	B constr-sca
power series orders get smaller scale dep \sim MHO scale dep reduce	1				<i>✓</i> <i>✓</i>	~	<i>s</i>
reliable not so arbitrary probabilistic		(<) <	(✓) ✓		55		

CSV: Canonical Scale Variation

- CH: [Cacciari,Houdeau 1105.5152]
- BCGJ: [Bagnaschi,Cacciari,Guffanti,Jenniches 1409.5036]
 - B: [Bonvini 2006.16293]
- DHMS: [Duhr, Huss, Mazeliauskas, Szafron 2106.04585]

See also [David, Passarino 1307.1843] [Forte, Isgrò, Vita 1312.6688] [Ghosh, Nachman, Plehn, Shire, Tait, Whiteson 2210.15167]

[McGowan, Cridge, Harland-Lang, Thorne 2207.04739] [Tackmann 2411.18606] [Lim, Poncelet 2412.14910]

Correlations in theory uncertainties

-Scale variation

- Theory correlations may arise between different bins of the same observables; between observables of the same process; between different processes.
- The understanding is that these correlations are due to same physics being at play
- In these case also the theory uncertainties will be correlated but how to estimate the correlation?
- One possibility is to use the unphysical scale(s) as the correlation parameter but does it make sense?

Correlations matter: the p_T^Z/p_T^W ratio in QCD

A Bayesian bridge between LFN and INFN Roma 1

Correlations matter: Z angular coefficients

[[]Gauld et al. '17, 1708.00008]

Theory nuisance parameters

Application to p_T Spectrum.

Step 2: Use p_T factorization to organize (resum) the double series for f_{nm} $\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}n_T} = \Big[H \times B_a \otimes B_b \otimes S\Big](\alpha_s; L \equiv \ln p_T/m_Z)$

• Each function $F \equiv \{H, B, S\}$ has exponential form (solution of its RGE)

Boundary conditions

$$F(lpha_s) = F_0 + lpha_s F_1 + lpha_s^2 F_2 + \mathcal{O}(lpha_s^3)$$

Anomalous dimensions

$$\begin{split} \Gamma(\alpha_s) &= \alpha_s \big[\Gamma_0 + \alpha_s \, \Gamma_1 + \alpha_s^2 \, \Gamma_2 + \mathcal{O}(\alpha_s^3) \big] \\ \gamma_F(\alpha_s) &= \alpha_s \big[\gamma_0 + \alpha_s \, \gamma_1 + \alpha_s^2 \, \gamma_2 + \mathcal{O}(\alpha_s^3) \big] \end{split}$$

 \Rightarrow Entire problem reduces to several scalar series $F(\alpha_s), \Gamma(\alpha_s), \gamma_F(\alpha_s)$

2024-02-26 | Frank Tackmann A Bayesian bridge between LFN and INFN Roma 1 18/29.

Theory nuisance parameters

TNP Uncertainties in Drell-Yan p_T Spectrum.

- N³⁺¹LL: Full N⁴LL resummation with highest-order boundary conditions and anomalous dimensions as TNPs
- Important caveats:
 - Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 2) \times f_n^{\text{true}}$
 - ► Hard boundary conditions *H*: No singlet corrections (enter only *Z* not *W*)
 - DGLAP splitting functions are noncusp anom. dimensions, not varied here

 \checkmark Correlations across p_T and between W and Z are correctly captured

2024-02-26 | Frank Tackmann

A Bayesian bridge between LFN and INFN Roma 1

27/29.

Theory nuisance parameters

TNP Uncertainties in Drell-Yan p_T Spectrum.

- N³⁺¹LL: Full N⁴LL resummation with highest-order boundary conditions and anomalous dimensions as TNPs
- Important caveats:
 - Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 2) \times f_n^{\text{true}}$
 - Hard boundary conditions H: No singlet corrections (enter only Z not W)
 - DGLAP splitting functions are noncusp anom. dimensions, not varied here

 \checkmark Correlations across p_T and between W and Z are correctly captured

2024-02-26 | Frank Tackmann

A Bayesian bridge between LFN and INFN Roma 1

28/29

Issues with Tackamann's approach

- Tackmann's defines in arbitrary way the probability distributions of the theory nuisance parameters
- However these are perturbative objects \rightarrow use the Bayesian approach to determine these distributions!

Our correlation setup

Consider the threshold resummation for a color singlet, i.e Higgs or Drell-Yan

$$\int_0^1 d\tau \tau^N \Sigma(\tau) = PDFs(N) \times g_0(\alpha_s) \exp^{S(\alpha_s, N)} \quad \text{with} \quad \tau = \frac{M^2}{s}$$

and where

$$S(\alpha_{s}, N) = \int_{0}^{1} dz \frac{z^{N} - 1}{1 - z} \left(\int_{\mu_{F}^{2}}^{M^{2}(1 - z)^{2}} \frac{d\mu^{2}}{\mu^{2}} 2A(\alpha_{s}(\mu^{2})) + D(\alpha_{s}((1 - z)^{2}M^{2})) \right)$$

$$A(\alpha_{s}) = \alpha_{s}A_{1} + \alpha_{s}^{2}A_{2} + \alpha_{s}^{3}A_{3} + \alpha_{s}^{4} + \dots$$

$$D(\alpha_{s}) = \alpha_{s}D_{1} + \alpha_{s}^{2}D_{2} + \alpha_{s}^{3}D_{3} + \dots$$

$$g_{0}(\alpha_{s}) = \alpha_{s}g_{01} + \alpha_{s}^{2}g_{02} + \alpha_{s}^{3}g_{03} + \dots$$

- Apply the Bayesian model to perturbative elements A,D and g_0 to obtain $P(A, D, g_0 | mathrmknown orders)$
- · Add a totally uncorrelated piece for the non-resummed part

A Bayesian bridge between LFN and INFN Roma 1

Joint distributions between K-factors for $qq \rightarrow H$ at different energies

without the uncorrelated fixed order piece

K(v/s=1 TeV) with the uncorrelated fixed order piece

ggH - Joint probability distribution for K-factors

10,0000

1 00000

0.10000

0.01000

0.00100

0.00010

0 00001

10

Correlation matrix of K-factors for $gg \rightarrow H$ at different energies

gH - Correlation matrix for K-factors

without the uncorrelated fixed order piece

ggH - Correlation matrix for K-factors

with the uncorrelated fixed order piece

Joint probability between DY and ggH

Outlook

Outlook

- Built a collaborative relationship between the LNF and Roma 1 nodes focused on SM precision measurements
- The work in progress is focused on building a Bayesian model for theoretical uncertainty correlations
- The consistent modelling of these correlations is important for the precision physics program at the LHC, and future colliders