Paolo Creminelli, ICTP Trieste

Symmetries of the primordial perturbations

PC, 1108.0874 (PRD) with J. Noreña and M. Simonović, 1203.4595

(with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP) with A. Nicolis and E. Trincherini, 1007.0027 (JCAP) + in progress with A. Joyce, J. Khoury and M. Simonović)

(Slow-roll) inflation

FRW metric:
$$
ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right) \qquad H \equiv \frac{\dot{a}}{a}
$$

$$
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) > 0 \qquad S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]
$$

 $\hbar \neq 0$

Each inflaton Fourier mode behaves as a harmonic oscillator with time dependent parameters

$$
S = \frac{1}{2} \int dt d^3x \frac{\dot{\phi}^2}{H^2} \left[a^3 \dot{\zeta}^2 - a(\partial \zeta)^2 \right]
$$
\n
$$
h_{ij} = a^2(t) \left[e^{2\zeta} \delta_{ij} + \gamma_{ij} \right]
$$
\n
$$
\begin{matrix}\n\downarrow \\
\downarrow\n\end{matrix}
$$

Final Potential

 $\mathbf X$

An old idea…

"With the new cosmology the universe must have started off in some very simple way. What, then, becomes of **the initial conditions required by dynamical theory**? Plainly there cannot be any, or they must be trivial. We are left in a situation which would be untenable with the old mechanics. If the universe were simply the motion which follow from a given scheme of equations of motion with trivial initial conditions, it could not contain the complexity we observe. **Quantum mechanics provides an escape from the difficulty. It enables us to ascribe the complexity to the quantum jumps, lying outside the scheme of equations of motion**."

P.A.M. Dirac 1939

The most known thing

 $\times 10^{-5}$!!

LSS:

CMB:

21cm: $f_{NL} \sim \epsilon, \eta$ (???)

Slow-roll = weak coupling = Gaussianity

 $\lambda \equiv V^{(4)} \lesssim \mathcal{O}(\epsilon^3, \eta^3)(10^{-5})^2$

Maldacena 02

Quantitative NG

$$
S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]
$$

\n
$$
\delta \phi = 0
$$

\n
$$
ds^2 = -N^2 dt^2 + h_{ij} (dx^i + N^i dt) (dx^j + N^j dt)
$$

\n
$$
\delta \phi = 0
$$

\n
$$
h_{ij} = a^2(t) \left[e^{2\zeta} \delta_{ij} + \gamma_{ij} \right]
$$

\nSolve for N, Nⁱ
$$
\int d^4x a^3 \frac{\dot{\phi}^2}{2H^2} \left[\dot{\zeta}^2 - (\partial \zeta)^2 / a^2 + \frac{2}{H} \frac{\partial_i}{\partial^2} \dot{\zeta} \partial_i \zeta \frac{\partial^2}{a^2} \zeta + \dots \right]
$$

\n
$$
\langle Q(t) \rangle = \left\langle \left[\bar{T} \exp \left(i \int_{-\infty}^t H_I(t) dt \right) \right] Q^I(t) \left[T \exp \left(-i \int_{-\infty}^t H_I(t) dt \right) \right] \right\rangle
$$

\n
$$
\frac{\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle}{\langle \zeta_{\vec{k}} \zeta - \vec{k} \rangle^{3/2}} \sim \epsilon \frac{H}{\sqrt{\epsilon} M_P} \ll 10^{-5}
$$

\n
$$
f_{\rm NL} \sim \epsilon
$$

Smoking gun for "new physics"

Any signal would be a clear signal of something non-minimal

- Any modification enhances NG
- 1. Modify inflaton Lagrangian. Higher derivative terms (ghost inflation, DBI inflation), features in potential
- 2. Additional light fields during inflation. Curvaton, variable decay width…

3. Alternatives to inflation

• Potential wealth of information

$$
\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta \left(\sum_i \vec{k}_i \right) F(\vec{k}_1, \vec{k}_2, \vec{k}_3)
$$

F contains information about the source of NG

Outline

- \circ Scale-invariance \rightarrow Conformal invariance ?
- \circ Perturbations decoupled from the inflaton are SO(4,1) invariant
- o Single field models: non-linear realization of conformal invariance
	- \rightarrow Generalization of the squeezed limit consistency relations
- o Non-inflationary models (eg Galilean Genesis). $SO(4,2) \rightarrow SO(4,1)$

de Sitter: SO(4,1)

Inflation takes place in \sim dS

$$
ds^2=\frac{1}{H^2\eta^2}(-d\eta^2+d\vec{x}^2)
$$

- **Translations, rotations**: ok
- **Dilations** (if slow-roll) $\eta \to \lambda \eta$, $\vec{x} \to \lambda \vec{x}$

 \rightarrow scale-invariance

$$
\varphi_{\vec{k}} \to \lambda^3 \varphi_{\vec{k}/\lambda} \qquad \langle \varphi_{\vec{k}_1} \varphi_{\vec{k}_2} \rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2) \frac{1}{k_1^3} F(k_1 \eta)
$$

In general:

$$
\langle \varphi_{\vec{k}_1} \dots \varphi_{\vec{k}_n} \rangle = (2\pi)^3 \delta(\sum_i \vec{k}_i) F(\vec{k}_1, \dots, \vec{k}_n)
$$

with F homogeneous of degree -3(n-1)

Special conformal

$$
\eta \to \eta - 2\eta(\vec{b} \cdot \vec{x}) , \quad x^i \to x^i + b^i(-\eta^2 + \vec{x}^2) - 2x^i(\vec{b} \cdot \vec{x})
$$

The inflaton background breaks these symmetries

Hierarchy of breakings

- **1. Deviation of metric from dS.** One can consider the $\epsilon \rightarrow 0$ limit at fixed $H/(M_P\sqrt{\epsilon})$
- **2. Breaking due to scalar background** $\phi(\vec{x},t) = t + \pi(\vec{x},t)$
	- Dilations. If we have (approximate) shift symmetry in $φ$, dilations are not broken
	- Special conformal. I would need a Galilean invariance $\phi \rightarrow \phi + \vec{b} \cdot \vec{x}$

But this cannot be defined in the presence of gravity

Cheung etal 07 $S \;\; = \;\; \int\!d^4x\;\sqrt{-g}\Big[\frac{1}{2}M_{\rm Pl}^2R + M_{\rm Pl}^2\dot{H}g^{00} - M_{\rm Pl}^2(3H^2+\dot{H}) + \frac{1}{2!}M_2(t)^4(g^{00}+1)^2 + \frac{1}{3!}M_3(t)^4(g^{00}+1)^3 + \nonumber\\$ $-\frac{\bar{M}_1(t)^3}{2}(g^{00}+1)\delta K^\mu{}_\mu-\frac{\bar{M}_2(t)^2}{2}\delta K^\mu{}_\mu{}^2-\frac{\bar{M}_3(t)^2}{2}\delta K^\mu{}_\nu\delta K^\nu{}_\mu+...\Bigr] \ .$ Time indep. coefficients

Scale Conformal invariance

Antoniadis, Mazur and Mottola, 11 Maldacena and Pimental, 11

Curvaton, modulated reheating…

If perturbations are created by a sector with negligible interactions with the inflaton, correlation functions have the full SO(4,1) symmetry

They are conformal invariant

Independently of any details about this sector, even at strong coupling

Same as AdS/CFT

dS-invariant distance

$$
\frac{|\vec{x}_i-\vec{x}_j|^2}{\eta_i\eta_j}-\left(\frac{\eta_i}{\eta_j}+\frac{\eta_j}{\eta_i}\right)
$$

Scale Conformal invariance

We are interested in correlators at late times

$$
x^{i} \to x^{i} + b^{i} \vec{x}^{2} - 2x^{i} (\vec{b} \cdot \vec{x}) \qquad \eta \to \eta - 2\eta (\vec{b} \cdot \vec{x})
$$

$$
\varphi \sim \eta^{\Delta} , \quad \Delta = \frac{3}{2} \left(1 - \sqrt{1 - \frac{4m^{2}}{9H^{2}}} \right) \ll 1
$$

This is the transformation of the a primary of conformal dim Δ

Example:
$$
m = \sqrt{2}H
$$
 $\Delta = 1$

$$
\int d^4x \sqrt{-g}\frac{M}{6}\varphi^3 \longrightarrow \langle \varphi_{\vec{k}_1}\varphi_{\vec{k}_2}\varphi_{\vec{k}_3} \rangle = (2\pi)^3 \delta \left(\sum_i \vec{k}_i \right) \frac{\pi}{16} M H^2 \eta_*^3 \cdot \frac{1}{k_1 k_2 k_3}
$$

$$
\langle \varphi(\vec{x}_1)\varphi(\vec{x}_2)\varphi(\vec{x}_3)\rangle = \frac{MH^2\eta_*^3}{128\pi^2} \cdot \frac{1}{|\vec{x}_1 - \vec{x}_2||\vec{x}_1 - \vec{x}_3||\vec{x}_2 - \vec{x}_3}
$$

Massless scalars

$$
\langle \varphi_{\vec{k}_1} \varphi_{\vec{k}_2} \varphi_{\vec{k}_3} \rangle = (2\pi)^3 \delta \left(\sum_i \vec{k}_i \right) \frac{H^2}{\prod_i 2k_i^3} \frac{2M}{3} \left[\sum_i k_i^3 (-1 + \gamma + \log(-k_i \eta_*)) + k_1 k_2 k_3 - \sum_{i \neq j} k_i^2 k_j \right]
$$

Zaldarriaga 03 Seery, Malik,Lyth 08

$$
\langle \varphi_1(\vec{x}_1) \varphi_2(\vec{x}_2) \varphi_3(\vec{x}_3) \rangle = \frac{M H^2}{48 \pi^2} \log \frac{|\vec{x}_1 - \vec{x}_2|}{A \eta_*} \log \frac{|\vec{x}_1 - \vec{x}_3|}{A \eta_*} \log \frac{|\vec{x}_2 - \vec{x}_3|}{A \eta_*}
$$

Everything determined up to two constants

Independently of the interactions!

$$
\frac{1}{M}\int d^4x \sqrt{-g}{\nabla}_\mu\varphi_1 {\nabla}^\mu\varphi_2\varphi_3\ \ \, \longrightarrow\,\frac{1}{M}\int d^4x \sqrt{-g}\frac{1}{2}\big(\Box\varphi_3\varphi_1\varphi_2 - \Box\varphi_1\varphi_2\varphi_3 - \Box\varphi_2\varphi_1\varphi_3\big).
$$

The conversion to ζ will add a local contribution:

 $k_t \equiv \sum_i k_i$

$$
\zeta(\vec{x}) = A_I \varphi^I(\vec{x}) + B_{IJ} \varphi^I(\vec{x}) \varphi^J(\vec{x})
$$

4-point function

$$
\int d^4x \frac{1}{8M^4} (\partial_\mu \varphi)^2 (\partial_\nu \varphi)^2
$$

$$
\langle \varphi_{\vec{k}_1} \varphi_{\vec{k}_2} \varphi_{\vec{k}_3} \varphi_{\vec{k}_4} \rangle = (2\pi)^3 \delta \left(\sum_i \vec{k}_i \right) \frac{1}{M^4} \frac{H^8}{\prod_i 2k_i^3} \left[-\frac{144k_1^2 k_2^2 k_3^2 k_4^2}{k_t^5} - 4 \left(\frac{12k_1 k_2 k_3 k_4}{k_t^5} + \frac{3 \prod_{i < j < l} k_i k_j k_l}{k_t^4} + \frac{\prod_{i < j} k_i k_j}{k_t^3} + \frac{1}{k_t} \right) \right]
$$
\n
$$
\left((\vec{k}_1 \cdot \vec{k}_2)(\vec{k}_3 \cdot \vec{k}_4) + (\vec{k}_1 \cdot \vec{k}_3)(\vec{k}_2 \cdot \vec{k}_4) + (\vec{k}_1 \cdot \vec{k}_4)(\vec{k}_2 \cdot \vec{k}_3) \right) + (\vec{k}_1 \cdot \vec{k}_2) \left(\frac{4k_3^2 k_4^2}{k_3^3} + \frac{12(k_1 + k_2)k_3^2 k_4^2}{k_t^4} + \frac{48k_1 k_2 k_3^2 k_4^2}{k_t^5} \right) + \text{6perm.} \right],
$$

Not so obvious it is conformal invariant…

I can check it in **Fourier space** Maldacena and Pimental, '11

$$
\sum_{a=1,2,3,4} \left[6 \vec{b} \cdot \vec{\partial}_{k_a} - \vec{b} \cdot \vec{k}_a \vec{\partial}_{k_a}^{\;2} + 2 \vec{k}_i \cdot \vec{\partial}_{k_a} (\vec{b} \cdot \vec{\partial}_{k_a}) \right] \langle \varphi_{\vec{k}_1} \varphi_{\vec{k}_2} \varphi_{\vec{k}_3} \varphi_{\vec{k}_4} \rangle' = 0
$$

In general: $F\left(\frac{r_{13}r_{24}}{r_{12}r_{34}}, \frac{r_{23}r_{41}}{r_{12}r_{34}}\right) \prod_{i < i} r_{ij}^{-2\Delta/3}$ 2 parameters instead of 5

Therefore

If we see something beyond the spectrum

- Something not conformal would be a probe of a "sliced" de Sitter
- Something conformal would be a probe of pure de Sitter

Non-linearly realized symmetries

The inflaton background breaks the symmetry. **Spontaneously**.

We expect the symmetry to be still there to regulate soft limit ($q \rightarrow 0$) of correlation functions (Ward identities)

$$
\lim_{q \to 0} q^{\mu} \Gamma^{(n)}_{J_{\mu}}(q;p_1,\ldots,p_n) = \delta \Gamma^{(n)}(p_1,\ldots,p_n)
$$

For example. Soft emission of π 's

For space time symmetries: number of Goldstones ≠ broken generators Manohar Low 01

We expect Ward identities to say something about higher powers of q

$$
\phi(t, \vec{x}) = \phi_0(t) \qquad h_{ij} = e^{2\zeta(t, \vec{x})} \delta_{ij}
$$

The long mode is already classical when the other freeze and acts just as a rescaling of the coordinates

$$
\langle \zeta(\vec{x}_2)\zeta(\vec{x}_3) \rangle |_{\bar{\zeta}(x)} \simeq \xi(\vec{x}_3 - \vec{x}_2) + \bar{\zeta}(\vec{x}_+)[(\vec{x}_3 - \vec{x}_2) \cdot \vec{\nabla}\xi(|\vec{x}_3 - \vec{x}_2|)]
$$

3pf consistency relation

$$
\langle \bar{\zeta}(\vec{x}_1)\zeta(\vec{x}_2)\zeta(\vec{x}_3) \rangle \simeq \langle \bar{\zeta}(\vec{x}_1)\bar{\zeta}(\vec{x}_+)\rangle [(\vec{x}_3 - \vec{x}_2) \cdot \vec{\nabla}\xi(|\vec{x}_3 - \vec{x}_2|)]
$$

$$
\simeq \int \frac{d^3 k_L}{(2\pi)^3} \int \frac{d^3 k_S}{(2\pi)^3} e^{i\vec{k}_L \cdot (\vec{x}_1 - \vec{x}_+)} P(k_L) P(k_S) \left[\vec{k}_S \cdot \frac{\partial}{\partial \vec{k}_S} \right] e^{i\vec{k}_S \cdot \vec{x}_-}
$$

$$
= -\int \frac{d^3k_1 d^3k_L d^3k_S}{(2\pi)^9} e^{-i\vec{k}_1 \cdot \vec{x}_1 - i\vec{k}_L \cdot \vec{x}_1 + i\vec{k}_S \cdot \vec{x}_-} \left[(2\pi)^3 \delta(\vec{k}_1 + \vec{k}_L) P(k_1) P(k_S) \frac{d\ln k_S^3 P(k_S)}{d\ln k_S} \right]
$$

$$
\langle \zeta(\vec{k}_1) \zeta(\vec{k}_2) \zeta(\vec{k}_3) \rangle \simeq -(2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) P(k_1) P(k_S) \frac{d\ln(k_S^3 P(k_S))}{d\ln k_S}
$$

$$
k_1 \to 0
$$

$$
\vec{k}_S = (\vec{k}_2 - \vec{k}_3)/2
$$

Single-field 3pf is very suppressed in the squeezed limit

Phenomenologically relevant

- 1. A detection of a local f_{NL} would rule out any single-field model
- 2. Some of the experimental probes are sensitive only to squeezed limits

Extension to the full SO(4,1)

A special conformal transformation induces a conformal factor linear in x

$$
\zeta = 2\vec{b}\cdot\vec{x} + \lambda
$$

Conformal consistency relations

(Assuming zero tilt for simplicity)

$$
\langle \zeta_{\vec{q}} \, \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \dots \zeta_{\vec{k}_n} \rangle' \stackrel{q \to 0}{=} -\frac{1}{2} P(q) q^i D_i \langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \dots \zeta_{\vec{k}_n} \rangle' + \mathcal{O}(q/k)^2
$$

with
$$
q^i D_i \equiv \sum_{a=1}^n \left[6\vec{q} \cdot \vec{\partial}_{k_a} - \vec{q} \cdot \vec{k}_a \vec{\partial}_{k_a}^2 + 2\vec{k}_a \cdot \vec{\partial}_{k_a} (\vec{q} \cdot \vec{\partial}_{k_a}) \right]
$$

2- and 3-pf only depends on moduli and $q^{i}D_{i}$ reduces to:

$$
\sum_{a=1}^{n} \vec{q} \cdot \vec{k}_a \left[\frac{4}{k_a} \frac{\partial}{\partial k_a} + \frac{\partial^2}{\partial k_a^2} \right]
$$

 The variation of the 2-point function is zero: no linear term in the 3 pf with D'Amico, Musso and Noreña, 11

Conformal consistency relations as Ward identities and with OPE methods

> Hinterbichler, Hui and Khoury 12 Kheagias, Riotto 12 in progress by Goldberger, Hinterbichler, Hui, Khoury, Nicolis

Non-linear realization of dS isometries

In decoupling $+$ dS limit: the inflaton breaks spontaneoulsy $SO(4,1)$. It is still non-linearly realized

 $\phi(\vec{x},$

$$
t) = t + \pi(\vec{x}, t)
$$

$$
\eta \to \eta - 2\eta(\vec{b} \cdot \vec{x})
$$

$$
x^i \to x^i + b^i(-\eta^2 + \vec{x}^2) - 2x^i(\vec{b} \cdot \vec{x})
$$

$$
\longrightarrow \boxed{\pi \to \pi + 2H^{-1}(\vec{b} \cdot \vec{x})}
$$

Notice the two meanings of SO(4,1):

- Isometry group of de Sitter
- Conformal group of 3d Euclidean

Adiabatic mode including gradients

Adiabatic modes can be constructed from unfixed gauge transformations (k=0) Weinberg 03

In
$$
\zeta
$$
 gauge: $\phi(t, \vec{x}) = \phi_0(t)$ $h_{ij} = e^{2\zeta(t, \vec{x})} \delta_{ij}$

- Cannot touch t
- Conformal transformation of the spatial coordinates:

$$
\zeta = 2\vec{b}(t)\cdot\vec{x} + \lambda(t)
$$

• Impose it is the $k \rightarrow 0$ limit of a physical solution

$$
\partial_j (H \delta N - \dot{\zeta}) = 0 \qquad (3H^2 + \dot{H}) \delta N + H \partial_i N^i = -\frac{\nabla^2}{a^2} \zeta + 3H \zeta
$$

• b and λ are time-independent + need a time-dep translation to induce the Nⁱ

Long wavelength approx of an adiabatic mode up to O(k2)

3pf - 4pf in slow-roll inflation

Maldacena 02 $\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta^3 (\sum \vec{k}_i) \frac{\dot{\rho}_*^4}{\dot{\phi}^4} \frac{H_*^4}{M_*^4} \frac{1}{\prod_{i}(2k_i^3)} A_*$ $\mathcal{A} = 2\frac{\ddot{\phi}_*}{\dot{\phi}_*\dot{\rho}_*}\sum_i k_i^3 + \frac{\dot{\phi}_*^2}{\dot{\rho}_*^2}\left[\frac{1}{2}\sum_i k_i^3 + \frac{1}{2}\sum_{i\neq i}k_i k_j^2 + 4\frac{\sum_{i>j}k_i^2k_j^2}{k_t}\right]$ $\langle \zeta_{{\bf k}_1} \zeta_{{\bf k}_2} \zeta_{{\bf k}_3} \zeta_{{\bf k}_4} \rangle^{\mathrm{CI}} = (2\pi)^3 \delta(\sum_{{\bf a}} {\bf k}_a) \frac{H_*^6}{4\epsilon^2 \prod_a (2k_a^3)} \sum_{\mathrm{norm}} \mathcal{M}_4({\bf k}_1,{\bf k}_2,{\bf k}_3,{\bf k}_4)$ $\mathcal{M}_4(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = -2 \frac{k_1^2 k_3^2}{k_{12}^2 k_{21}^2} \frac{W_{24}}{k_1} \left(\frac{\mathbf{Z}_{12} \cdot \mathbf{Z}_{34}}{k_2^2} + 2 \mathbf{k}_2 \cdot \mathbf{Z}_{34} + \frac{3}{4} \sigma_{12} \sigma_{34} \right)$ $-\frac{1}{2}\frac{k_3^2}{k_2^2}\sigma_{34}\left(\frac{\mathbf{k}_1\cdot\mathbf{k}_2}{k_1}W_{124}+2\frac{k_1^2k_2^2}{k_2^3}+6\frac{k_1^2k_2^2k_4}{k_2^4}\right) ,$ $\sigma_{ab} = \mathbf{k}_a \cdot \mathbf{k}_b + k_b^2$ Lidsey, Seery, Sloth 06 $Z_{ab} = \sigma_{ab} k_a - \sigma_{ba} k_b$. Seery, Sloth, Vernizzi 09 $W_{ab} = 1 + \frac{k_a + k_b}{k} + \frac{2k_a k_b}{k^2}$ $W_{abc} = 1 + \frac{k_a + k_b + k_c}{k_a} + \frac{2(k_a k_b + k_b k_c + k_a k_c)}{k^2} + \frac{6k_a k_b k_c}{k^3}$

Small speed of sound

$$
S = \frac{1}{2} \int d^4x \sqrt{-g} \left(M_{\rm Pl}^2 R + 2P(X, \phi) \right) \qquad X = -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi
$$

$$
c_s^2 \equiv \frac{P_{,X}}{P_{,X} + 2XP_{,XX}} \qquad \lambda = X^2 P_{,XX} + \frac{2}{3} X^3 P_{,XXX}
$$

$$
\Sigma = X^2 P_{,X} + 2X^2 P_{,XX}.
$$

$$
P_{\zeta} = \frac{1}{2M_{\text{Pl}}^2} \frac{H^2}{c_s \epsilon} \qquad \mu = \frac{1}{2} X^2 P_{,XX} + 2X^3 P_{,XXX} + \frac{2}{3} X^4 P_{,XXX}
$$

 $\sqrt{2}$

$$
\langle \zeta_{\vec{k}_1} \cdots \zeta_{\vec{k}_n} \rangle = (2\pi)^3 \delta(\vec{k}_1 + \cdots + \vec{k}_n) P_{\zeta}^{n-1} \prod_{i=1}^n \frac{1}{k_i^3} \mathcal{M}^{(n)}(\vec{k}_1, \ldots, \vec{k}_n)
$$

$$
\mathcal{M}^{(3)} = \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma}\right) \frac{3k_1^2 k_2^2 k_3^2}{2k_t^3} + \left(\frac{1}{c_s^2} - 1\right) \left(-\frac{1}{k_t} \sum_{i > j} k_i^2 k_j^2 + \frac{1}{2k_t^2} \sum_{i \neq j} k_i^2 k_j^3 + \frac{1}{8} \sum_i k_i^3\right)
$$

E.g. X. Chen etal 09

Small speed of sound

- At the level of observables, the non-linear relation among operators in the Lagrangian
- \bullet Squeezed limit is 1/c $_{\rm s}^{\,2}$ while the full 4pf is 1/c $_{\rm s}^{\,4}$

$$
\langle \zeta_{\vec q}\zeta_{\vec k_1}\zeta_{\vec k_2}\zeta_{\vec k_3}\rangle \simeq -\frac{1}{2}P(q)q^iD_i\langle \zeta_{\vec k_1}\zeta_{\vec k_2}\zeta_{\vec k_3}\rangle \propto \frac{1}{c_s^2}
$$

• A large 4pf cannot have a squeezed limit

Conformal consistency relations with tilt

$$
\langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle' \stackrel{q \to 0}{=} -P(q) \left[-3(n-1) - \sum_a \vec{k}_a \cdot \vec{\partial}_{k_a} + \frac{1}{2} q^i D_i \right] \langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle' + \mathcal{O}(q/k)^2
$$

with $q^i D_i \equiv \sum_{a=1}^n \left[6\vec{q} \cdot \vec{\partial}_{k_a} - \vec{q} \cdot \vec{k}_a \vec{\partial}_{k_a}^2 + 2\vec{k}_a \cdot \vec{\partial}_{k_a} (\vec{q} \cdot \vec{\partial}_{k_a}) \right].$

• Dilation part evaluated on a non-closed polygon

• Verified in modes with oscillations in the inflaton potential

$$
\langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle = (2\pi)^3 \delta(\vec{q} + \vec{k}_1 + \dots + \vec{k}_n) \left(-\frac{H}{\dot{\phi}} \right)^{n+1} \frac{H^{2n-2}}{2q^3 \prod_{i=1}^n 2k_i^3} I_{n+1}
$$

$$
I_{n+1}=-2\,\mathrm{Im}\int_{-\infty-i\epsilon}^0\frac{\mathrm{d}\eta}{\eta^4}V^{(n+1)}(\phi(\eta))(1-iq\eta)(1-ik_1\eta)\ldots(1-ik_n\eta)e^{ik_t\eta}
$$

Generalizations

• Graviton correlation functions:

$$
x_i \to x_i + A_{ij}x_j + B_{ijk}x_jx_k
$$

Induce long graviton with

$$
A_{ij} = \frac{1}{2}\gamma_{ij} , \quad B_{ijk} = \frac{1}{4}(\partial_k\gamma_{ij} - \partial_i\gamma_{jk} + \partial_j\gamma_{ik})
$$

 $q \rightarrow 0$

$$
\langle \gamma_{\vec{q}}^s \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle'_{q \to 0} = -\frac{1}{2} P_{\gamma}(q) \sum_a \epsilon_{ij}^s(\vec{q}) k_{ai} \partial_{k_{aj}} \langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle' -\frac{1}{4} P_{\gamma}(q) \sum_a \epsilon_{ij}^s(\vec{q}) \left(2 k_{ai}(\vec{q} \cdot \vec{\partial}_{k_a}) - (\vec{q} \cdot \vec{k_a}) \partial_{k_{ai}} \right) \partial_{k_{aj}} \langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle'
$$

Not more than one…

• Soft internal lines

$$
\langle \zeta_{\vec{k}_1} \cdots \zeta_{\vec{k}_n} \rangle'_{\vec{q}\to 0} = P_{\zeta}(q) \langle \zeta_{-\vec{q}} \zeta_{\vec{k}_1} \cdots \zeta_{\vec{k}_m} \rangle_{\vec{q}\to 0}^* \langle \zeta_{\vec{q}} \zeta_{\vec{k}_{m+1}} \cdots \zeta_{\vec{k}_n} \rangle_{\vec{q}\to 0}^*
$$

+ $P_{\gamma}(q) \sum_s \langle \gamma_{-\vec{q}}^s \zeta_{\vec{k}_1} \cdots \zeta_{\vec{k}_m} \rangle_{\vec{q}\to 0}^* \langle \gamma_{\vec{q}}^s \zeta_{\vec{k}_{m+1}} \cdots \zeta_{\vec{k}_n} \rangle_{\vec{q}\to 0}^*$

• More than one q going to zero together

$SO(4,2) \to SO(4,1)$

Rubakov 09 Nicolis, Rattazzi, Trincherini 09 PC, Nicolis and Trincherini 10 Hinterbichler Khoury 11 Hinterbichler Joyce Khoury 12

Non linearly realized conformal symmetry. The time dependent solution is SO(4,1)

$$
\mathcal{S}_{\pi} = \int d^4x \sqrt{-g} \left[f^2 e^{2\pi} (\partial \pi)^2 + \frac{f^3}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{f^3}{2\Lambda^3} (\partial \pi)^4 \right]
$$

E.g. Galilean Genesis

$$
e^{\pi_{\rm dS}} = -\frac{1}{H_0 t} \qquad -\infty < t < 0
$$

$$
g_{\mu\nu}^{(\pi)} \equiv e^{2\pi(x)} \eta_{\mu\nu}
$$
 is "de Sitter"

A test scalar σ must couple to the π "metric": correlation functions are SO(4,1)

Conclusions

 \circ Linear realization of SO(4,1) for mechanisms decoupled from inflaton

o Non-linear realization for single-field models

$$
\langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle' \stackrel{q \to 0}{=} -P(q) \left[-3(n-1) - \sum_a \vec{k}_a \cdot \vec{\partial}_{k_a} + \frac{1}{2} q^i D_i \right] \langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle' + \mathcal{O}(q/k)^2
$$

with $q^i D_i \equiv \sum_{a=1}^n \left[6\vec{q} \cdot \vec{\partial}_{k_a} - \vec{q} \cdot \vec{k}_a \vec{\partial}_{k_a}^2 + 2\vec{k}_a \cdot \vec{\partial}_{k_a} (\vec{q} \cdot \vec{\partial}_{k_a}) \right].$

 \circ Fake SO(4,1) symmetry from 4d conformal

o Future directions:

- **Relation with Ward identities for spontaneously broken symmetries**
- Extension to models with $SO(4,2)$
- **Extension to late cosmology**

The not-so-squeezed limit

P.C., G D'Amico, Musso, Noreña 11

At lowest order in derivatives

$$
S_2 + S_3 = M_{\rm Pl}^2 \int d^4 x \; \epsilon a^3 \left[(1+3\zeta_B) \dot{\zeta}^2 - (1+\zeta_B) \frac{(\partial_i \zeta)^2}{a^2} \right]
$$

Long mode reabsorbed by coordinate rescaling $\vec{x} \rightarrow (1 + \zeta_B)\vec{x}$

Corrections:

- Time evolution of ζ is of order k^2
- Spatial derivatives will be symmetrized with the short modes, giving k^2
- Constraint equations give order k^2 corrections

Final result: in the not-so-squeezed limit we have

$$
\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle \simeq -(2\pi)^3 \delta(\vec{k}_1+\vec{k}_2+\vec{k}_3) P(k_1) P(k_S) \left[\frac{\mathrm{d}\ln(k_S^3 P(k_S))}{\mathrm{d}\ln k_S} + \mathcal{O}\left(\frac{k_1^2}{k_S^2}\right) \right]
$$

Why do we care?

LSS is a powerful probe of NG: **scale-dependent bias**

Local NG induces a correlation between large scale and small scale power.

Modifies the relation among halo and matter perturbations.

Dalal etal 07

No scale dependent bias

Scale-dependent bias is sensitive to the squeezed limit

Probability of crossing:
$$
\text{Exp}\left(-\frac{\delta^2}{2\sigma^2}\right)
$$

Long mode changes the variance $\propto \Phi_L$

$$
\nabla^2 \Phi_L \propto \delta_L \hspace{1cm} \text{Therefore, on large scales, for local NG,} \hspace{0.4cm} \frac{\Delta b_h}{b_h} \sim \frac{f_{\rm NL}}{k^2}
$$

(Bias on large scales goes to a constant)

A detection of bias going as k-1 would **rule out all single field models**

How squeezed is squeezed?

