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UA Launches New Center for Al Research and
Development

UA is setting a new standard for Al research as part of a campus-wide
collaboration.
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Deep learning symmetries and their Lie groups,
algebras and subalgebras from first principles

Oracle preserving latent flows

Discovering sparse representations of Lie groups
with machine learning
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This talk is being given

» by a phenomenologist, who is a theorist and a member of an LHC experiment.
— what is a “phenomenologist™?

The experimentalist asks: The theorist answers: ‘
Is it possible to have a theory
model which gives signature X? ' Yes.
No.
Are there any well motivated /
such models? ~.| You bet. Let me tell you about

those. Actually | have a paper...

Is there any Monte Carlo which I’'m the wrong person to ask.
can simulate those models? Ask a phenomenologist.

Slide circa 2005



Nowadays the tables have turned

« The stream of LHC data has changed the picture

‘ Experimentalist answers: The theorist asks:

Yes. <+«— | Can LHC be sensitive to model X?

mogﬁ?'ﬁoagr\t,:,zufgl;n S()ﬁoe\:\} — |s there any analysis which is
. ) o
MSUGRA plots. looking for this model*

Manpower. But talk to a

phenomenologist — Why not?! It's a great model.

Slide circa 2015



The simulation pipeline in HEP

Theory Model Parton-level Event Detector Data
> »
Model Interpreter — Calculator | | Generator Simulator | Analysis
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Vacuum structure
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The curse of dimensionality

Dimensionality per event
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Phenomenology

Franceschini,Kim,Kong,KM,Park,Shyamsundar Rev.Mod.Phys. 2023



NOW BACK TO THE COLLOQUIUM



Outline

Why Machine Learning? My personal story

Symmetries in every day life, in math, and in physics

— Group theory from a physicist’s point of view

Discovering continuous symmetries with machine learning
(little or no Lie group theory background needed)

— Basicingredients
* Math: vector spaces, operations, invariants
e ML: features, neural networks, labels (oracles)

— Loss functions

Examples (too many to fit in a single talk)

— Orthogonal groups O(n) (Euclidean rotations)

— Lorentz transformations in 4D space-time

— Unitary groups U(n)

— Exceptional groups: G,, F,, E..

— Symmetries in a latent (reduced dimensionality) space




Machine Learning versus Data Science

e Data science is necessarily an interdisciplinary paradigm
— The battle of the Venn diagrams

Substantive

Figure 1a: Conway's Data Scientist Venn Diagram

http://drewconway.com/




Machine Learning versus Data Science

e Data science is necessarily an interdisciplinary paradigm
— The battle of the Venn diagrams
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The Job Market

 Many of our students do not end up going into academia
— Data science skills are important

— Communication skills are also important

Fields of Employment of Exiting Physics Masters One Year After Degree, The Data Scientist Venn Diagram

Classes of 2016, 2017, & 2018 Combined

Statistics Programming

Non-STEM*
6%

Communi-

cation Business

Physics or
Astronomy
28%

The
Accountant

https://datascience.stackexchange.com/
users/2853/stephan-kolassa



https://datascience.stackexchange.com/

Ariel Machine Learning Data Challenge

* In 2022, the Ariel Consortium organized a Machine
Learning Data Challenge at the NeurlPS conference

— Given an observed exoplanet transmission spectrum, find the
planet’s physical parameters and atmospheric composition

— Our team “Gators” won first place and a $2,500 prize!

* |In 2023 the “Gators” were again one of the winning teams

F
ARIEL DATA CHALLENGE 2022. WE PRESENT YOU WITH THIS A\ CERTIFI
CONTRIBUTION TOWARDS ADVANCING THE STATE OF IN

07 December 2022




Symmetries in every day life

vIContinuous

Johnston et al., “Symmetry and simplicity
spontaneously emerge from the algorithmic
nature of evolution”, PNAS (2022)




Symmetry in science

 Math: “the term symmetry is used to refer to an object that
is invariant under some transformations” (Wikipedia)

— Key concepts: object, transformation, invariance

* Physics: “it is only slightly overstating the case to say that
physics is the study of symmetry” (P. Anderson 1972)

— Noether’s theorem: every continuous symmetry of the action of
a conservative system has a corresponding conservation law.

Symmetry
Rotation
Space translation

Time translation

1111

Conservation law
Angular momentum

Momentum

Energy

E. Noether



Group Theory: Basics

* Math definition: A group is a set of elements G with a

o»”

binary operation “.” obeying:
— Closure: c=a.b belongs to G for all a,b in G.
— Unit element: e: e.a=a.e=a for allain G.
— Inverse element: al:a.al=atl.a=eforallainG.
— Associativity: (a.b).c=a.(b.c) for all a,b,cin G.
* Less rigorous definitions often used in physics:

— Define the transformations explicitly. For example, “U(3) is
the group of transformations represented with 3x3 unitary
matrices”.

— Define the invariant quantity explicitly. For example, “O(3)
is the group of transformations preserving the length of a
3-vector”. This will be our approach here.



ML Symmetry Formalism

* We need to define the object, the transformation and the group invariant.

- _ | Vector Space Function (Oracle)
X X’ o(x)=0(x’)

e Let’s translate this setup into the machine learning terminology
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This part (the data) will be given to us We will be building this



Symmetry parametrization

Linear Non-linear

X — X'=(l1+eG)x

s VOO )
Ao L

-00000

I: identity matrix xg;o\’go
i A o A i W o
G: matrix to be learned N Y

Neural network whose

Visualizing the learned generators:
parameters are to be learned

SU(2) example (Pauli matrices)
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po(x) = |x|° =
SO(1,3)
or(x) = (20)? = (@®)? = @) = (z®)2, 20 ¢ R‘
Squeeze map
" (X) = X<1>X<2>|
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Dy = ' (2) X i) ) K
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Loss Functions

Question: How does the machine learn?

Answer: by minimizing the loss function! The loss computes the
difference b/n the current and the expected outputs of an algorithm

We can easily incorporate constraints into the loss function
Constraint ‘ Loss function
A(p)=B [A(p)-B]*

e Qur loss function will contain several contributions, one for each
desired symmetry property
— Invariance (the transformation preserves the oracle)
— Normalization (the transformation is non-trivial)
— Orthogonality (the found symmetries are different from each other)
— Closure (the found symmetries form a group)
— Sparsity (the representations are simple and easy to interpret)




Contributions to the Loss Function

Invariance | Lin(G, {x})= —
me

1

m

i=1

Z[‘:B(Xz +&G - x;) - SB(Xi)]Z

Normalization Loorm(G) = [Tr(G : @T) _ 1]2

Sparsity

Orthogonality | Lo,u,(G, {x;}) = Y [Tr(GLGg)]

Lp(G) = > Z IGYRGYE| (1 - 656 )

n

jk=1j k=1

Ny

a<p
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The Basic Algorithm

Data points V
sampled from
a normal —>( X[ . & > Oraclel]
distribution y'Cl
x’
- Lossl
H t
yperparam=ere —> Transforma. on@

dimensions 0

G,
Generatorf o ® >

generators

tolerance !

I ReadButs

Adam optimizer




First Toy Example: 2D Rotations

N

* Oracle: L2 norm of a vector

=

* n=2 dimensions; N,=1 generator

Generator 1

1.00 QX 0 -
0.50 .

s Orthogonal matrices 14
0.00 . .

s are anti-symmetric!

-0.50 )

—-0.75

-1.00

1 2

* n=2 dimensions; N,=2 generators

Generator 1 Generator 2

1.00 .
0.75 10 77
1 1 0.50 s
10 ~ 1
0.25
., -8
0.00 107" -
-0.25
2 2 —0.50 107" 1
-0.75
~14
-1.00 10
1 2 1 2

Loss




Rotations in 3D

* The training is successful for N,=1 or N,=3 generators

n=3[80(3)]

Generator 1 Generator 2 Generator 3 Lo

0.75
0.50
0.25
0.00
-0.25

—0.50
—-0.75

—-1.00

0 100 200 300 400 500 600

1 2
Epochs
J J Beginning of training End of training
s B E : afaplyd
Epoch: 0 | Angles = 66.16°, 92.56°, 44.16° Epoch: 300 | Angles = 90.0°, 90.0°, 90.0°

Structure Constants
1.00

0.75
0.50
0.25
0.00

—-0.25
—0.50
—-0.75

—1.00

1 2 3
Generator




Rotations in 4D

* The training is successful

n=4[30(4))

10"
for N.=1,2,3,4,6 generators _ Al — mo2
* The full symmetry group Ng =3
SO(4) is rank 2 S w0t 2 — xt‘
(@) - Ng=
— There exists an Abelian Y — N,=6
(Cartan) subalgebra with — Ng=7
Ng=2 generators 00 100 0 M0 40 500 60
Epochs
Generator 1 Generator 2 Lo Structure Constants
- 1.0
0:50 -'ﬂ_'..l 0.5
2 0.25 5
oo0 U 121 0.0
3 -0.2 E
s @ —0.5
¢ w7 . . -1.0
-10 1 2

Generator



Rotations in 4D: other subalgebras

* The training is successful for N,=3 generators
— SO(3) is a subgroup of SO(4)

Generator 1 Generator 2 Generator 3

1.0 Structure Constants
1- 11 1- ,
0.5 0.50
2 . 2 2 - 2 0.25
0.0 Y 31 0.00
3 4 3 4 3 A g 025
-0.5 -0.50
4 1 - 4 1 4 - 23
T T T T T T T T T T -1.0 ~1.00
1 2 3 4 1 2 3 4 1 2 3 4 ! ? 3
Generator

* The training is successful for N,=4 generators
— SO(3)xSO(2) is a subgroup of SO(4) I

Generator 1 Generator 2 Generator 3 Generator 4 Lo 13 1
L 0.5
050 14 1
] 2 2 0.25

F00
0.00 73
3 3 -0.25

=

Bracket

-0.50 F—0.5
4 4 -0.7% 24 1
T T T T T T T T =1.00
4 1 2 3 4 1 2 3 4 -1.0
34
1 2 3 4

Generator



Rotations in 4D: full so(4) algebra

* Ng=6is the maximum number of structure Constants
generators which 2

— are symmetries
— are orthonormal
— form a closed algebra

Generator 1 Generator 2 Generator 3

100

075

Bracket

050

- 025

Ll 1 L] 1 Ll 1 Ll 1 1
1 ] g} 4 1 2 3 4 1 2 g} 4
- 0.00
Generator 4 Generator 5 Generator &

- —0.25

—0.50

-0.75

-1.00

Generator



SO(n) Summary

 Heat map of the Log-Loss for

— different number of dimensions n (y-axis)
— different number of generators N, (x-axis)

* Low values of the loss (blue squares) imply valid algebras
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(uolloun4 ssoq)3oT




Tour de Force: SO(10) Generators
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Lorentz Group

Oracle: the Minkowski metric t?-x2-y2-z2
The Lorentz group is the cornerstone of relativity
Being SO(1,3), it resembles SO(4), but has richer subalgebra structure

— N,=2: both an Abelian and a non-Abelian subalgebra

— N,=3: five different types of non-Abelian subalgebras

— N,=4: one subalgebra

— N,=6: the full Lorentz algebra N
All those results were confirmed with our method [%

/

S0(1, 3)
2.5 >
® machine zero #3+axd so(1,1) 1
¢ closure X \
207 x  orthogonality ]
15 A
0
S0/ X4.X5.xg | XLX3.X5 X1,X2,X4 X1,X2,X3 3
' so(3) 5i(2) e(2) X3+aX4 hom(2)
0.5
N X1.X2,X3,X4 4
sim(2)
0.0 @ eernann T erennnan “' .'
1 2 3 4 5 6 7 so(1,3) 6
Ng

Source: wikipedia



Example: the full Lorentz algebra

* The N,=6 generators describe:

— Boosts: symmetric matrix, non-zero
entries in Oi position, i=1,2,3

— Rotations: anti-symmetric matrix, non-
zero entries in ij position

 The learned generators are generic

Structure Constants

mixtures of those canonical generators .
Generator 1 Generator 2 Generator 3 -0.2
100 24
1 1 . 1 E
075 W25
2 21 2 E 0.0
34 3. 3] 0.50 26 1
34 o
49 41 41 F0.25 _03
1 2 31 4 T S T T 2 3 a 35 1

F0.00
Generator 4 Generator 5 Generator 6 36 -

6

1 2 3 4
Generator

5




Squeeze mapping

Squeeze mapping is an example of an equi-areal symmetry
transformation
The oracle in this case is ¢(xy,X,)=X;X,.
— The area of a rectangle with corners at the origin and at (x,x,)
— The equipotential contours are hyperbolas x,=a/x,

* A deep neural network can learn a finite transformation

(represented with the arrows in the vector flow)

2 V2V A A B O B T T O O 4
A7/ 0PV VNN 3
R EEERER R RN - A shallow neural network can
A A A A A B L T T T T

lrrmrrororo7 2 0N NN NN N ] - 2 H 1Al H

,,,,,, ARBEEENN . learn the infinitesimal generator J

i A S b L R e _1

L v v v o o o o F N AN R wm wm w e e e e
I DRI [ B o1 Rt .

- » e‘-
w N . —1 O




(Midpoint) Summary

* Taking stock of what we have been able to accomplish
— Given: some dataset with labels given by an oracle
— Derive: the closed (sub)algebra of N, symmetry generators

* Comments and observations

— The learned generator depends on the initial configuration (seed)

— The learned generators are some general linear combinations of the
canonical sparse generators found in the textbooks

— The training can get rather slow for large N,

* Open questions, refinements and potential improvements*
— Can we speed up the training?
— How can we learn the canonical sparse generators?

— Can we preserve more than one oracle function simultaneously?
* Examples: the exceptional groups G,, F,; the MNIST digits.

— Can the oracle be a more complicated (discontinuous) function?
— How can we identify what symmetry group has been learned?

— How to decide if the symmetry is trivial or not? (irrelevant features?)
*all those points were addressed in the follow-up papers
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Discontinuous oracles — example |

Discontinuous oracle functions lead to nonlinear transformations
— require parametrization of the symmetry with a deep neural network

\

Shallow network
(no hidden layers)
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Discontinuous oracles — example i

* Another example: Manhattan (L1) distance oracle
— Continuous, but not continuously differentiable

(x) = [xV]+ X2

Shallow network Deep network
(no hidden layers) (3 hidden layers)

2 4.05
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Learning Sparse Representations

* To find the canonical sparse form of the symmetry generators,
include the following additional term to the loss function

n n

Lo(@) = > > |[GWGYT¥|(1 - 6,7 6u)

jk=1j k=1

* |t encourages learning a sparser form of the generators
— Example: the Lorentz group algebra found earlier

Before adding the sparsity loss After adding the sparsity loss
Generator 1 Generator 2 Generator 3 100 Generator 1 Generator 2 Generator 3 -
l = Bl U
0.75 075
2 2 2 2 2
n mel om0
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1
B
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2 —0.50 2 2 —0.50
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4 4 4 . 4
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Learning Sparse Representations

* The relative contribution of the sparsity loss term needs to
be just right, otherwise it is too much of a good thing.

— Example: the N, =4 subgroup of the Lorentz group

No sparsity loss term

Negligible sparsity loss term

Just the right amount

Sparsity loss dominates

=0.0

o w [¥] - o w (] = g (") [¥] = o W [¥] - S [*) LY [
— .
[N
w
=

hss

=0.01

hsp

=0.1

=10

hs

J1

L,

mm"

"

.
a1
-
-

-
[}
w
s

100
Iu?5
- 050




Sparse Representations: U(n) and SU(n)

n

The oracle for unitary groups: [e() = 3 (@)=Y, Ve

j=1

 The sparse representations were learned successfully
U(n) SU(n)
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Tour de Force: SU(6)

* Total number of generators: 62-1 =35
— SU(6) is rank=5 => 5 real diagonal generators (2,8,10,13,24)
— 15 symmetric real matrices
— 15 anti-symmetric purely imaginary matrices
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Unitary groups: subgroup structure

* The value of the trained loss function is an indicator
of the presence or absence of a valid sub-algebra

U(2) u(3)
161 @ machine zero = 101+ @ machine zero X
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Probing the subalgebra structure

* Test for all possible decompositions into factors

h = &hhd---d)h,

Number of subalgebra factors &

Ny || 1 2 3 4

| [)(1) ~~“~— — —

o -~
2 1 1 Sso
2 || by | b @b}’ S —
3 2 1 1 1 DS~
3o | v ey” | b e ey [T
3 1
b(l)@b(z)

2 2

1@ eb a1 | 1" @b opeb"F  Cartan
subalgebra

4 || 5@




Less trivial example: u(4)

 The transformations are described with 4x4 complex matrices

* There exist valid subalgebras with the following number of
generators:

— 1 through 10, 15 and 16
 The Cartan subalgebra has 4 generators (the rank is 4)
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Number of subalgebra factors h
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The subalgebra b
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The two u(4) subalgebras with 10 generators

e su(3)xu(l)xu(l)
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Aj Cﬁg A; = u(4)

}’ e B, =so(5)
t :—:l-: 2

Eugene Dynkin E{:E C, = sp(4)
(1924-2014)

The so(5)~sp(4) subgroup of u(4)

Girard Desargues
(1591-1661)
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so(5) algebra
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Symmetries of the MINIST Digits

The MNIST dataset is a widely used database for training and
testing various image processing machine learning algorithms

70,000 handwritten digits as images of 28x28 pixels

Typical applications
— Multi-class classification (10 possible categories)
— Data compression and manifold learning
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MNIST information content

Not all of the 28x28=784 features (pixel values) carry equal
amount of information

— The information is mostly contained in the central pixels

It is possible to find (almost) equivalent, reduced
dimensionality representations of this data

— Latent space: an embedding of the original featuresin a
compressed representation

We can try to look for symmetries in the latent space

Typical images Average pixel value Maximum pixel value
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The Basic Idea

Previously we were doing this: —

But first need to build this: Ev

Now we’ll be doing this: -

—

Target
sz

Feature
space

RTL

Latent
space




Autoencoder Architecture

Original —
Decode
feature Latent space z
feature
space X ’
space X

e Let’s start with a toy example (next slide)
— Keep only the 0 and 1 digits from the MINIST dataset
— Compress to a 2D latent space
— Train a binary classifier (oracle) to produce the labels (logits)
— Find the 1-parameter symmetry transformation in the latent space
— Decode to the feature space to see what the transformation is doing



Symmetries of the digits 0 and 1

 Symmetry direction * Orthogonal direction
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Symmetry deformations of the digits
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Refresher on Octonions

Generalizations of the complex numbers
— 7 imaginary units: {i, j, k, 1, il, jl, kl}.

Inherit the familiar operations:

— multiplication, conjugation, norm, inverse imagine.art

Related to exceptional structures in mathematics
— E.g.: Jordan algebra h; -> F, and E, exceptional Lie groups

Real component of a triple octonion product




Exceptional Groups: G,
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e There are three oracles

* n=27 dimensional real
feature space

* F, has 52 generators

e QOur result matches
previous results in the
literature obtained with
Mathematica
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The E, group

* For E; only the last oracle applies => E; contains F, as a subgroup
— The additional 26 generators beyond those of F, are shown below

e Our results match those previously derived with Mathematica

453 454 455 J56 457 J58 459

J60 J61 J62 J63 Je4 J65 J66

J67 J68 Js9 J70 J71 J72 J73

J74 J75 J76 J77 J78




Speeding up the learning process

* A:learning all symmetry generators at once Algorithm 1 The greedy algorithm.
— pro: we can ensure closure 1 E;ramgtem A, Liins Nepochs’
. . . . 2 < LI
— con: slow in high dimensions or for many 3 W e Wiia ~ N
sym metries 4 for i from / to N,pocps do
. 5 L « Lgreedy(G(W)a {v]]}a X);
* B:learn one symmetry generator at a time 6 | if L <Ly then
7 append G(W) to {J};
— pro: much faster 3 goto 3;
9 end

— con: delay the study of group properties to a post- ;| 4y w9y Ly
processing stage i end

« Timing tests for SU(n): 2

Algorithm 2: The Lie bracket trick (LBT) algorithm.

10° B 1 Input: {J,..., Ji}: known agebra; Ji+1: new
= Standard generator;
Greedy 2 append Ji+1 to G;
u| 3 repeat

e LBT 4 | k|G
0 s | i |
T 1071 6 | append GtoJ;
g - 7 clear G;
o ’ 8 for pfrom 7toi do
3 9 for g from j+7toi+kdo
— . 10 C Jpdgs Jodpi
D) 11 C C- g (C9)
£ 105 2 if |ICIl, Othen
[ .. 13 C ﬁ;

_‘. PP TETELA L * 14 if L,’nv(C, X) < Lpyin then
e 15 | append Cto G;
....': ..... . ....... .‘ 16 a-]d
| 17 end
0
ST Y 4 5 6 7 8 9 10 I end
19 end

n 20 until |G| = 0;




Different Flavors of =

Symmetry Learning
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Summary and Future Directions

We have a method (and a public python code) to
derive the symmetry algebra of a labelled dataset

Many known results from group theory can be
rederived and verified (useful teaching tool)

— Orthogonal groups

— Lorentz group

— Unitary groups

— Exceptional groups

It would be interesting to apply this to real datasets
and discover unexpected or unknown symmetries
— The MNIST example sets the blueprint

Experimental mathematics is a lot of fun!



Main References
* The papers

* The python code
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Symbolic Learning
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Feature Engineering with Machine Learning

Low-Level Inputs —> Kinematic Variables —» Physics Task (a)

Low-Level Inputs —> Machines — Physics Task (b)

Kinematic Variables

T » Machines — Physics Task (c)

’O
-
’.
-

Low-Level Inputs

Deep Learned

— i d
Kinematic Variables Physics Task  (d)

Low-Level Inputs—> Machines —>

Franceschini,Kim,Kong,KM,Park,Shyamsundar RMP 2023




Machine-Learned Event Variables

* Let’s ask the machine to learn a good event variable

Artificial event variable V(X))

Data Generator
a A
\ Event
S \ Variable N
=) 10 : Network T(?())': Auxiliary
: V:ix —YV Classifier V0
I Network S 3
Ytarget — 1
:)»::O\C S o) y:V xQ—[0,1]
| >
Pe | - o .
Q @fake Ytarget = 0 ComPOSIte
Neural Network

Kim, Kong, KM, Park, Shyamsundar (2021)



Example 1: Drell-Yan events

 Feed the momenta of the two leptons, ask the machine to
guess if they came from a resonance A with a mass M,

x107° x 1072

1.0] ma=280 0 ma= 400
0.8
0.6

0.4

0.2

0.0— ‘ ‘ A "1‘_, g ‘ -:-._'

. 1000 1500 2000 2500 3000

1000 2000 3000 Artificial variable VV
Artificial variable V

Kim, Kong, KM, Park, Shyamsundar (2021)



Example 2: leptonic W events

* Feed the MET vector (transverse momentum of C) and the
momentum of the lepton (b), ask the machine to guess if
the event came from a resonance A with a mass M,

0

x 1074

T =0.9516
ry = 0.9934

200 400 600
Artificial variable V/
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Kim, Kong, KM, Park, Shyamsundar (2021)



Example 3: leptonic W-pair events

* Feed the MET vector (net transverse momentum of
the two C’s) and the momentum of the two leptons
(b’s), ask the machine to guess if the event came from
the pair production of resonances A with a mass M,

x 1077

x 1073
5.0 L] ma= 200; Mg = 100
ma = 280, m¢c = 100
4.0 - mpa = 320,m¢ = 100
2 mp = 400;m¢c = 100
3.0
2.0
7 = (.6848 1.0
_ r, = 0.8518 |
0 250 500 750 ' A 200 400 600
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Kim, Kong, KM, Park, Shyamsundar (2021)



Truth and Beauty in Particle Theory

* Truth: the model fits the existing experimental data
— A measurement of an observable O places a constraint on the
model parameters p, (dashed line)
* Beauty: a subjective criterion influenced by personal
preferences, community views, etc.
— We consider examples where beauty can be quantified (z-axis)

 Examples of theory models:
— 1: beautiful and wrong
— 2: beautiful and true
— 3:ugly and true
— 4: ugly and wrong

*Matchev, Matcheva, Ramond, Verner 2023
Accepted at NeurlPS 2023 (poster)




Beauty = Uniformity

In each run, inputs are re-sampled "7 L<104
within the experimental errors o B e
The training results in low valuesof, ., =~ . - - L] e
the total loss (10 runs, right plot) — =» e
L. ; : % - 1 4 Lrota
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Pseudoexperiment
Re(My) Tm(My) _ N Arg(My)
40 50 100
20 40
0 30 0
-20 20
a0 0 —-100
—60 0
Re(Mg) Im(My) L My . Arg(My)
0.5 0.8 100
0.6
0.0 0
0.4
—0.5 0.2 -100
-1.0 0.0




	Slide 1: Machine Learning Symmetries in Physics from First Principles
	Slide 2: Three great things about UA
	Slide 3: Three great things about UA
	Slide 4: Three great things about UA
	Slide 5: References
	Slide 6: Who are we? 
	Slide 7
	Slide 8
	Slide 9: The simulation pipeline in HEP
	Slide 10: The curse of dimensionality
	Slide 11: NOW BACK TO THE COLLOQUIUM
	Slide 12: Outline
	Slide 13: Machine Learning versus Data Science
	Slide 14: Machine Learning versus Data Science
	Slide 15: The Job Market 
	Slide 16: Ariel Machine Learning Data Challenge
	Slide 17: Symmetries in every day life  
	Slide 18: Symmetry in science 
	Slide 19: Group Theory: Basics
	Slide 20: ML Symmetry Formalism 
	Slide 21: Symmetry parametrization 
	Slide 22: Oracle Zoo 
	Slide 23: Loss Functions 
	Slide 24: Contributions to the Loss Function 
	Slide 25: The Basic Algorithm
	Slide 26: First Toy Example: 2D Rotations  
	Slide 27: Rotations in 3D 
	Slide 28: Rotations in 4D 
	Slide 29: Rotations in 4D: other subalgebras  
	Slide 30: Rotations in 4D: full so(4) algebra  
	Slide 31: SO(n) Summary 
	Slide 32: Tour de Force: SO(10) Generators
	Slide 33: Lorentz Group
	Slide 34: Example: the full Lorentz algebra 
	Slide 35: Squeeze mapping 
	Slide 36: (Midpoint) Summary  
	Slide 37: Further Reading  
	Slide 38
	Slide 39: The AI Map
	Slide 40: Discontinuous oracles – example I 
	Slide 41: Discontinuous oracles – example II 
	Slide 42: Learning Sparse Representations 
	Slide 43
	Slide 44: Sparse Representations: U(n) and SU(n)
	Slide 45: Tour de Force: SU(6) 
	Slide 46: Unitary groups: subgroup structure  
	Slide 47: Probing the subalgebra structure
	Slide 48: Less trivial example: u(4)
	Slide 49: The subalgebra structure of u(4)
	Slide 50: The two u(4) subalgebras with 10 generators
	Slide 51: The so(5)~sp(4) subgroup of u(4)
	Slide 52: Symmetries of the MNIST Digits
	Slide 53: MNIST information content
	Slide 54: The Basic Idea
	Slide 55: Autoencoder Architecture
	Slide 56: Symmetries of the digits 0 and 1
	Slide 57: Symmetry deformations of the digits
	Slide 58: Refresher on Octonions 
	Slide 59: Exceptional Groups: G2
	Slide 60: The F4 group
	Slide 61
	Slide 62: Speeding up the learning process
	Slide 63: Different Flavors of Symmetry Learning  Algorithms 
	Slide 64: Summary and Future Directions  
	Slide 65: Main References
	Slide 66: BACKUP SLIDES
	Slide 67: Symbolic Learning
	Slide 68: Feature Engineering with Machine Learning 
	Slide 69: Machine-Learned Event Variables
	Slide 70: Example 1: Drell-Yan events
	Slide 71: Example 2: leptonic W events
	Slide 72: Example 3: leptonic W-pair events
	Slide 73
	Slide 74

