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1. UA strives to be the Quantum AI University



References
Deep learning symmetries and their Lie groups, 
algebras and subalgebras from first principles

Oracle preserving latent flows

Discovering sparse representations of Lie groups 
with machine learning

Accelerated discovery of machine-learned symmetries: 
deriving the exceptional groups G2, F4 and E6

Identifying the group-theoretic structure of 
machine-learned symmetries

Python code on github



Who are we? 

Florida, January 2023 Pittsburgh, Pheno, May 2023
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The simulation pipeline in HEP

• Symmetries
• Representations
• Fields (basis)
• Lagrangian
• Aesthetics

• Resolution
• RecoObjects
• Histograms
• Backgrounds
• Selection cuts
• ROC curve
• Error analysis

• RGEs
• Vacuum structure
• Mass spectrum
• Feynman rules
• Feynman diagrams
• Cross sections (rates)
• Branching fractions (rates)
• MC event generation
• Fragmentation
• Hadronization
• Higher Order Corrections



The curse of dimensionality

Franceschini,Kim,Kong,KM,Park,Shyamsundar Rev.Mod.Phys. 2023



NOW BACK TO THE COLLOQUIUM



Outline
• Why Machine Learning? My personal story
• Symmetries in every day life, in math, and in physics

– Group theory from a physicist’s point of view

• Discovering continuous symmetries with machine learning 
(little or no Lie group theory background needed)
– Basic ingredients

• Math: vector spaces, operations, invariants
• ML: features, neural networks, labels (oracles)

– Loss functions

• Examples (too many to fit in a single talk)
– Orthogonal groups O(n) (Euclidean rotations)
– Lorentz transformations in 4D space-time
– Unitary groups U(n)
– Exceptional groups: G2, F4, E6.
– Symmetries in a latent (reduced dimensionality) space



Machine Learning versus Data Science

• Data science is necessarily an interdisciplinary paradigm 

– The battle of the Venn diagrams

http://drewconway.com/ Joel Grus

Gru
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The Job Market 
• Many of our students do not end up going into academia

– Data science skills are important

– Communication skills are also important

https://datascience.stackexchange.com/
users/2853/stephan-kolassa

My ML course @ UF

https://datascience.stackexchange.com/


Ariel Machine Learning Data Challenge

• In 2022, the Ariel Consortium organized a Machine 
Learning Data Challenge at the NeurIPS conference

– Given an observed exoplanet transmission spectrum, find the 
planet’s physical parameters and atmospheric composition

– Our team “Gators” won first place and a $2,500 prize!

• In 2023 the “Gators” were again one of the winning teams



Symmetries in every day life  

Discrete Continuous

Johnston et al., “Symmetry and simplicity 
spontaneously emerge from the algorithmic 
nature of evolution”, PNAS (2022)



Symmetry in science 
• Math: “the term symmetry is used to refer to an object that 

is invariant under some transformations” (Wikipedia) 
– Key concepts: object, transformation, invariance

• Physics: “it is only slightly overstating the case to say that 
physics is the study of symmetry” (P. Anderson 1972)
– Noether’s theorem: every continuous symmetry of the action of 

a conservative system has a corresponding conservation law.

E. Noether

Symmetry      Conservation law           

Rotation

Space translation

Time translation

Angular momentum           

Momentum           

Energy           



Group Theory: Basics

• Math definition: A group is a set of elements G with a 
binary operation “.” obeying:
– Closure: c=a.b belongs to G for all a,b in G.

– Unit element: e: e.a=a.e=a for all a in G.

– Inverse element: a-1: a.a-1 = a-1.a=e for all a in G.

– Associativity: (a.b).c=a.(b.c) for all a,b,c in G.

• Less rigorous definitions often used in physics:
– Define the transformations explicitly. For example, “U(3) is 

the group of transformations represented with 3x3 unitary 
matrices”.

– Define the invariant quantity explicitly. For example, “O(3) 
is the group of transformations preserving the length of a 
3-vector”. This will be our approach here.



ML Symmetry Formalism 
• We need to define the object, the transformation and the group invariant.

D
RAFT

Notation and Set-Up
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Oracle
(learned or postulated)

Transformat ion
Transformat ion on feature space:

g : xi ! x0i

Transformat ion is a symmetry if:

' (x0i ) ⌘ ' (g(xi )) = ' (xi )

Goal: Find transformations

g(xi ) which preserve the oracle ' .

In physics, ' represents a

conserved quant ity.

g '

Time Translat ion (T0) E

Rotat ion (Rij ) ~L

Lorentz (Kµ⌫) T µ⌫

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 2 / 57

D
RAFT

Parameterization of Symmetry Transformations

Linear

x0= (I + ✏W ) x (2)

I ⌘ identity matrix

W ⌘ n⇥ n matrix to be
learned by our method

Figure: Visualizat ion: SU(2) generators for a

single layer linear model using the L2-norm

oracle ' (x) = |x|.

Non-Linear

x ! | {z }
NN whose parameters are

to be learned by our method

!
x0 or
x0− x
✏

(3)

Figure: Visualizat ion: Grid vector

transformation representat ion for a deep linear

layered model using the L1-norm oracle

' (x) = |x(1) | + |x(2) |.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 3 / 57

Neural network

Vector Space
x

Vector Space
x’

Map
Function (Oracle)

(x)=(x’)

• Let’s translate this setup into the machine learning terminology

We will be building thisThis part (the data) will be given to us



Symmetry parametrization 
Linear Non-linear

D
RAFT
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x’x

Visualizing the learned transformation

Visualizing the learned generators:
SU(2) example (Pauli matrices)

x x’=(I+G)x

I: identity matrix
G: matrix to be learned

Neural network whose 
parameters are to be learned

oracle 
function



Oracle Zoo 
O(n) U(n)

SO(1,3)

Figure 3: Fano plane illustrating the multiplication rules for the

imaginary unit octonionse1, . . . ,e7 in our conventions. For each triple

ei , ej and ek connected by a solid line, the result of the multiplication

eiej is equal to +ek (−ek) when going along (against) thearrows. The

dashed lineshavebeen added to guidetheeyein following each triplet

cycle.

consider three of the five exceptional Lie groups: G2 in

thissection, F4 in Section 5, and E6 in Section 6. These

exceptional Lie groups have found various applications

in high energy physics in the context of gauge theories

and model building [8, 14, 16, 33–39]. Given the

significant mathematical complexity of these groups,

our ability to successfully derive their algebras attests

to the robustness and generality of our ML techniques.

The smallest exceptional Lie group is theG2 group,

which hasrank 2and dimension 14. Thisgroup emerges

astheautomorphism group of theoctonion algebra [40].

An octonion o is a linear combination

o =

7X

i=0

x(i)ei (10)

of the unit octonions ei with real coefficients x(i). Here

e0 is the real element which obeys e2
0

= +1 and can

be identified with the real number 1. The remaining

e1, . . . ,e7 are the seven imaginary unit octonions which

obey e2
i = −1. Their multiplication rules can be

visualized in the Fano plane of Figure 3. The figure

shows only one of 480 possibledefinitions for octonion

multiplication with e0 = 1; the other definitions are

isomorphic and can be obtained by permuting and/or

changing the signs of the imaginary basis elements.

The group G2 has a fundamental representation of

dimension 7, hence in this section x 2 R7. The

components of the feature vector x will be identified

Figure 4: A pictorial visualization of the rank three tensor D i jk

defined in Eq. (12). Each plane represents a slice at a fixed i =

0,1, . . . , 7 (from left to right). The blue, red and grey boxes indicate

coefficient values of +1, −1 and 0, respectively.

with the coefficients x(i), i = 1, . . . , 7, of the imaginary

unit octonions in (10). Correspondingly, the generators

{J} will be real 7⇥7 matrices.

In general, the exceptional groups preserve K

vector oracles ' (1), . . . , ' (K), where each component

' (i) represents an invariant polynomial characteristic

of the group. The group G2 preserves K = 2 such

polynomials. The first one is the norm of a purely

imaginary octonion,
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To define the second oracle, we need to introduce the

real part of the product of three octonions o1, o2 and o3
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Using the multiplication rules from Figure 3, the

components of the rank three tensor D i jk can be easily

derived and are shown in Figure 4. The group G2

preserves the real component of the product of three

purely imaginary octonions, hence thesecondG2 oracle

is (note that the sumsstart from 1 instead of 0)
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For the training of the G2 generators, we use m =

900 samples (7-dimensional vectors in R7) and fix " =

10−3. For the computation of the second oracle (13) we

split the sample into three equally sized groups of 300,

from which we draw the three vectors x1, x2 and x3.

Thetraining wasdonewith theAdamoptimizer [41] for

1,000 epochs and with learning rate of 2.5⇥10−2.

Our results for thelearnedG2 generatorsareshown in

Figure 5. The panels in the top two rows depict the 14

generators found by the greedy algorithm (as expected,

5
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FIG. 21. The same as Fig. 17, but showing an example of
an SL(2,R) subalgebra (52).

A representat ive training example is shown in Fig-
ure 21, from which we recognize the found three
generators as

J1 ⇡ K1 − L3, (53a)

J2 ⇡ − L3, (53b)

J3 ⇡ K2. (53c)

It is easy to verify that their structure constants
given in the lower panel of Figure 21 are consistent
with Eq. (52).

C. Four Gener at or Subalgebr as

The only four-dimensional subalgebra is generated by
{X1,X2,X3,X4} . A representat ive example is shown in
Figure 22. The four found generators are given by

J1 ⇡ L3 = X4, (54a)

J2 ⇡ K2 + L1 = X2, (54b)

J3 ⇡ − K1 + L2 = − X1, (54c)

J4 ⇡ − K3 = − X3. (54d)

Thelower panel of Figure22 illustratesthecorresponding
structure constants. The results are consistent with Ta-
ble I. For example, J1 and J4 commutebecause[X3,X4] =
[K3,L3] = 0. Similarly, J2 and J3 commute due to
[X1,X2] = 0. The results shown in the remaining rows in
the lower panel of Figure 22 can be analogously verified
with the help of Table I.

FIG. 22. Top row: the successfully learned generators for

the n = 4, Ng = 4 exercise considered in Sect ion VI C, using
the pseudo-Euclidean oracle (36). Bot tom panel: the corre-

sponding st ructure constants.

D . Six Gener at or A lgebr as

Our method is capable of finding the full six-
dimensional algebra as well. The result is shown in Fig-
ure 23, and can be roughly ident ified as

J1 ⇡ − L1, J2 ⇡ − K2, J3 ⇡ − L3, (55a)

J4 ⇡ + K1, J5 ⇡ − K3, J6 ⇡ − L2. (55b)

The corresponding structure constants are shown in the
lower panel of Figure 23.

Figure 24 summarizes the results for the value of the
overall loss funct ion obtained in typical t raining runs, as
a funct ion of therequested number of generatorsNg. The
green circles represent thecaseswhen a closed subalgebra
wassuccessfully found, and theloss isessent ially machine
zero. The remaining cases in Figure 24 correspond to
unsuccessful trainings, i.e., no closed algebra with that
many generators was found. In those cases, the total
loss remained relat ively large, due to tension with either
the orthogonality condit ion (red crosses) or the closure
condit ion (magenta diamonds).

V I I . SQU EEZE M A PPI N G I N T W O

D I M EN SI ON S

Consider again two dimensions, but now let the oracle
return the product of the two input features:

' (x) = x(1) x(2) . (56)

Squeeze map

F4



• Our loss function will contain several contributions, one for each 
desired symmetry property
– Invariance (the transformation preserves the oracle)
– Normalization (the transformation is non-trivial)
– Orthogonality (the found symmetries are different from each other)
– Closure (the found symmetries form a group)
– Sparsity (the representations are simple and easy to interpret)

Loss Functions 
• Question: How does the machine learn?

• Answer: by minimizing the loss function! The loss computes the 
difference b/n the current and the expected outputs of an algorithm

• We can easily incorporate constraints into the loss function

Constraint
A(p)=B

Loss function
[A(p)-B]2



Contributions to the Loss Function 

Invariance

Orthogonality

Closure

Normalization

Sparsity



The Basic Algorithm

Loss	
	
	
	
	

Generator	

Transforma. on	

Oracle	 Invariance	

Orthogonality	

Closure	

Normaliza7on	

Read	Out	

n	

Ng	

e 

x	

x’	

Ga	

y	

y’	

Data points 
sampled from 
a normal 
distribution

Hyperparameters

dimensions

generators

tolerance

Adam optimizer



First Toy Example: 2D Rotations  

• Oracle: L2 norm of a vector

• n=2 dimensions; Ng=1 generator 

• n=2 dimensions; Ng=2 generators 

fail

Orthogonal matrices 
are anti-symmetric!



Rotations in 3D 
• The training is successful for Ng=1 or Ng=3 generators

fail

Beginning of training End of training



fail

Rotations in 4D 
• The training is successful 

for Ng=1,2,3,4,6 generators

• The full symmetry group 
SO(4) is rank 2
– There exists an Abelian 

(Cartan) subalgebra with 
Ng=2 generators



Rotations in 4D: other subalgebras  
• The training is successful for Ng=3 generators

– SO(3) is a subgroup of SO(4)

• The training is successful for Ng=4 generators
– SO(3)xSO(2) is a subgroup of SO(4)



Rotations in 4D: full so(4) algebra  
• Ng=6 is the maximum number of 

generators which
– are symmetries
– are orthonormal
– form a closed algebra



SO(n) Summary 
• Heat map of the Log-Loss for 

– different number of dimensions n (y-axis) 

– different number of generators Ng (x-axis)

• Low values of the loss (blue squares) imply valid algebras

Log(Loss Fu
n

ctio
n

)



Tour de Force: SO(10) Generators



Lorentz Group
• Oracle: the Minkowski metric t2-x2-y2-z2

• The Lorentz group is the cornerstone of relativity
• Being SO(1,3), it resembles SO(4), but has richer subalgebra structure  

– Ng=2: both an Abelian and a non-Abelian subalgebra
– Ng=3: five different types of non-Abelian subalgebras
– Ng=4: one subalgebra
– Ng=6: the full Lorentz algebra

• All those results were confirmed with our method
Ng

0

1

2

3

4

6
Source: wikipedia



Example: the full Lorentz algebra 
• The Ng=6 generators describe:

– Boosts: symmetric matrix, non-zero 
entries in 0i position, i=1,2,3

– Rotations: anti-symmetric matrix, non-
zero entries in ij position

• The learned generators are generic 
mixtures of those canonical generators



Squeeze mapping 
• Squeeze mapping is an example of an equi-areal symmetry  

transformation
• The oracle in this case is (x1,x2)=x1x2. 

– The area of a rectangle with corners at the origin and at (x1,x2) 
– The equipotential contours are hyperbolas x2=a/x1 

• A deep neural network can learn a finite transformation 
(represented with the arrows in the vector flow)

17

FIG. 23. Top row: the successfully learned generators for the
n = 4, Ng = 6 exercise considered in Sect ion VI D, using the

pseudo-Euclidean oracle (36). Bot tom panel: the correspond-
ing st ructure constants.

This oracle funct ion is illustrated in Figure 25 as a color
heatmap represent ing the oracle values in the (x(1) , x (2) )
Cartesian plane. We see that the set of points with the
same oracle values form hyperbolas.

Proceeding as before, our method finds the symmetry
t ransformat ion illustrated with the vector field in Fig-
ure 25. The corresponding generator is

J =

 
− 1 0

0 1

!

. (57)

We verified that in this example the method is unable to
find more than one generator.

Theseresultsareprecisely what onewould expect . The
symmetry which preserves the oracle (56) is the squeeze

FIG. 24. The final value of the overall loss funct ion as a
funct ion of the requested number of generators Ng for the

SO(1, 3) example of Sect ion VI. The colored symbols iden-
t ify the dominant cont ribut ion to the overall loss: magenta

diamonds for the closure term (14) and red crosses for the
orthogonality term (13). For the green circles the total loss is
zero to within machine precision. The learning rate was 0.005

and " = 0.001.

FIG. 25. Color heatmap showing the values of the oracle (56)

in the (x ( 1) , x ( 2) ) Cartesian plane. The superimposed vector

field represents the symmet ry found by our method.

mapping

F =

 
1
`

0

0 `

!

, (58)

where ` is a scale factor. Considering infinitesimal t rans-
format ions (18) with ` = 1 + " immediately leads to the
generator (57).

• A shallow neural network can 
learn the infinitesimal generator J 



(Midpoint) Summary  
• Taking stock of what we have been able to accomplish

– Given: some dataset with labels given by an oracle
– Derive: the closed (sub)algebra of Ng symmetry generators

• Comments and observations
– The learned generator depends on the initial configuration (seed)
– The learned generators are some general linear combinations of the 

canonical sparse generators found in the textbooks
– The training can get rather slow for large Ng

• Open questions, refinements and potential improvements*
– Can we speed up the training?
– How can we learn the canonical sparse generators?
– Can we preserve more than one oracle function simultaneously?

• Examples: the exceptional groups G2, F4; the MNIST digits.

– Can the oracle be a more complicated (discontinuous) function?
– How can we identify what symmetry group has been learned?
– How to decide if the symmetry is trivial or not? (irrelevant features?)

*all those points were addressed in the follow-up papers
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Prompt: Students cheering the end of a boring colloquium on Machine Learning (Picasso style) 



The AI Map
V. Osaulenko (2020)



Discontinuous oracles – example I 
• Discontinuous oracle functions lead to nonlinear transformations

– require parametrization of the symmetry with a deep neural network

18

FIG. 26. The symmet ry generated by the oracle (59) with a
shallow method with no hidden layers and no bias (top panel)

or a deep method with three hidden layers and bias (bot tom
panel).

V I I I . D I SCON T I N U OU S OR A CLES

A . P iecewise L inear Or acle

Our setup isnot limited to only cont inuousoracle func-
t ions like the ones discussed so far in the preceeding sec-
t ions. Our method can also work with piecewise-defined
funct ions like

' (x) =

(
− x(2) , for x(1) < 0,

+ x(1) , for x(1) ≥ 0.
(59)

The result ing oracle funct ion is illustrated with the
color map in Figure 26. Since the oracle is now a funct ion
which isnot cont inuously di↵erent iable, our parametriza-
t ion of thesymmetry t ransformat ion needs to beproperly
generalized.

The advantage of using a neural network as a universal
funct ion approximator is highlighted in Figure 26. In the

top panel we use no hidden layers, while in the bot tom
panel we use a deep learning architecture with three hid-
den layers. The found symmetry t ransformat ion in each
case is then shown with thevector field and superimposed
on the oracle color map. The results are not iceably dif-
ferent , part icularly near the locat ions of discont inuity in
the oracle funct ion. The deep-learning approach in the
bot tom panel correct ly ident ifies a transformat ion which
preserves the oracle values everywherewithin the consid-
ered domain. In cont rast , the shallow approach in the
top panel is unable to adjust the t ransformat ion near the
discont inuity, which leads to locat ions near the boundary
x(1) = 0 where the arrows run across the equipotent ial
contours, violat ing the conservat ion law.

B . M anhat t an D ist ance Or acle

In this subsect ion we consider one more example of an
oracle in two dimensions (n = 2), which, while cont inu-
ous, is not cont inuously di↵erent iable:

' (x) = |x(1) | + |x(2) |. (60)

The results from our procedure are shown in Figure 27
in complete analogy to Figure 26. In the top panel we
use no hidden layers, while in the bot tom panel we use a
deep learning architecture with three hidden layers and
bias. We observe that the deep-learning approach can
again correct ly handle the discont inuit ies, always gener-
at ing transformat ions along, but never across, the con-
tours of equal oracle funct ion values.

I X . CON CL U SI ON S

In this paper, we studied a fundamental problem in
data science which is commonly encountered in many
fields: what is the symmetry of a labeled dataset , and
how to ident ify its group st ructure? For this purpose,
we designed a deep-learning method which models the
generic symmetry t ransformat ion and its generators with
a fully connected neural network. We then constructed
suitable loss funct ions which ensure that the applied
transformat ions aresymmetries and that the correspond-
ing set of generators forms a closed (sub)algebra. An
important advantage of our approach is that we do not
require any advance knowledge of what symmetries can
be expected in the data, i.e., instead of test ing for sym-
metries from a predefined list of possibilit ies, we learn
the symmetry direct ly.

Our procedure is very general and is universally ap-
plicable in a wide variety of situat ions (see, e.g., [54]).
The centerpiece of our analysis is an oracle ' (x) which
defines the conserved quant ity. The oracle can be com-
pletely general, as illust rated with several examples in

Shallow network
(no hidden layers)

Deep network
(3 hidden layers)

Arrows aligned with contoursArrows cross contours



• Another example: Manhattan (L1) distance oracle
– Continuous, but not continuously differentiable

Discontinuous oracles – example II 

18

FIG. 26. The symmetry generated by the oracle (59) with a
shallow method with no hidden layers and no bias (top panel)
or a deep method with three hidden layers and bias (bot tom

panel).
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A . Piecewise L inear Oracle
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Learning Sparse Representations 
• To find the canonical sparse form of the symmetry generators, 

include the following additional term to the loss function  

• It encourages learning a sparser form of the generators 
– Example: the Lorentz group algebra found earlier

Before adding the sparsity loss After adding the sparsity loss



No sparsity loss term 

Learning Sparse Representations 
• The relative contribution of the sparsity loss term needs to 

be just right, otherwise it is too much of a good thing.
– Example: the Ng=4 subgroup of the Lorentz group

Sparsity loss dominates

Negligible sparsity loss term  

Just the right amount



Sparse Representations: U(n) and SU(n)

• The oracle for unitary groups:

• The sparse representations were learned successfully 

U(n) SU(n)

n
=

2
n

=
3



Tour de Force: SU(6) 

• Total number of generators: 62-1 =35
–  SU(6) is rank=5 => 5 real diagonal generators (2,8,10,13,24)

– 15 symmetric real matrices

– 15 anti-symmetric purely imaginary matrices



Unitary groups: subgroup structure  

• The value of the trained loss function is an indicator 
of the presence or absence of a valid sub-algebra



Probing the subalgebra structure

• Test for all possible decompositions into factors

Cartan 
subalgebra



Less trivial example: u(4)
• The transformations are described with 4x4 complex matrices 
• There exist valid subalgebras with the following number of 

generators:
– 1 through 10, 15 and 16

• The Cartan subalgebra has 4 generators (the rank is 4)



The subalgebra 
structure of u(4)

• Color code:
– Green: valid decomposition
– Orange: no such decomposition

• Different rows represent 
different (nonisomorphic) 
algebras

• Only up to 4 factors are 
possible
– The rank is 4

• The circled examples are 
illustrated on the next slide



The two u(4) subalgebras with 10 generators

• su(3) x u(1) x u(1)

• sp(4) ~ so(5)



The so(5)~sp(4) subgroup of u(4)

A3 = u(4)

B2 = so(5)
C2 = sp(4)

Girard Desargues
(1591-1661)

Eugene Dynkin
(1924-2014)

Desargues 
configuration

so(5) algebra



Symmetries of the MNIST Digits
• The MNIST dataset is a widely used database for training and 

testing various image processing machine learning algorithms
• 70,000 handwritten digits as images of 28x28 pixels
• Typical applications

– Multi-class classification (10 possible categories)
– Data compression and manifold learning 



MNIST information content
• Not all of the 28x28=784 features (pixel values) carry equal 

amount of information
– The information is mostly contained in the central pixels

• It is possible to find (almost) equivalent, reduced 
dimensionality representations of this data 
– Latent space: an embedding of the original features in a 

compressed representation

• We can try to look for symmetries in the latent space

Typical images Average pixel value Maximum pixel value



The Basic Idea

Previously we were doing this:

Now we’ll be doing this:

But first need to build this:



Autoencoder Architecture

• Let’s start with a toy example (next slide)
– Keep only the 0 and 1 digits from the MNIST dataset
– Compress to a 2D latent space
– Train a binary classifier (oracle) to produce the labels (logits)
– Find the 1-parameter symmetry transformation in the latent space
– Decode to the feature space to see what the transformation is doing

128
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4

conv1

64 7x
7

conv2

16 4x
4

conv3

64

l inear1

32

N m

mapping1

NL

z
lat ent 32
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mapping2
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l inear2

16 4x
4

deconv1
64 7x

7

deconv2

128
14
x1
4

deconv3

1
28
x2
8

sigmoid

Latent space z
Original 
feature 
space x

Decoded
feature 
space x’



Symmetries of the digits 0 and 1

• Symmetry direction • Orthogonal direction

Latent space z



Symmetry deformations of the digits

• Now the real exercise:
– Keep all 10 digits
– Compress to 16D latent space
– Train a 10-class classifier
– Find the symmetries

• Starting from the platonic 
digits, follow a symmetry 
streamline in + and – direction

• The resulting images are 
depicted to the right

• The images in each row have 
equal values for all 10 logits 
(oracles), and are therefore 
classified the same way



Refresher on Octonions 
• Generalizations of the complex numbers 

– 7 imaginary units: {i, j, k, l, il, jl, kl}.

• Inherit the familiar operations:
– multiplication, conjugation, norm, inverse

• Related to exceptional structures in mathematics
– E.g.: Jordan algebra h3 -> F4 and E6 exceptional Lie groups

Figure 5: The fourteenG2 generators learned with the greedy method (top panels) and the result from their sparsification (bottom panels). In this

and all subsequent such figures, each panel represents a learned generator J↵ in matrix form, where the values of the individual elements of the

matrix are indicated by thecolor bar.

the algorithm failed to find a valid 15th generator,

where even after 10,000 epochs, the loss stayed of

order 1). The panels in the bottom two rows show the

corresponding results after applying the sparsification

procedure of Section 3.3. Note that all found generators

areantisymmetric (G2 isasubgroup of SO(7)), and that

they can beorganised into 7 pairs which share common

matrix elements: J1 and J9, J2 and J7, J3 and J4, J5

and J10, J6 and J12, J8 and J11, J13 and J14. Note that

in each pair, one generator has six non-zero elements,

while the other has only four. Therefore our version is

sparser than the conventional textbook representation,

in which each generator has six nonvanishing elements.

5. The Exceptional Group F4

In this and the next section we follow the notation of

refs. [42] and [43], where the generators for F4 and E6

have been explicitly derived. The exceptional group F4

has rank 4 and dimension 52. It is the automorphism

group of the Jordan algebra

h3 =

0
BBBBBBBB@

r1 o1 o2

o⇤
1
r2 o3

o⇤
2

o⇤
3
r3

1
CCCCCCCCA

, (14)

where ra are three real numbers (a = 1, 2,3), and oa
are three octonions [42]. The asterisk notation in (14)

stands for octonion conjugation

o⇤= x(0)e0 −

7X

i=1

x(i)ei . (15)

The fundamental representation is of dimension 26.

Following [42, 43], wefind it convenient to work in R27

instead and map the components of the feature vector x

onto ra and oa as follows

r1 = x(1), o1 =

7X

i=0

x(2+i) ei , (16a)

r2 = x(18), o2 =

7X

i=0

x(10+i) ei , (16b)

6
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Figure 3: Fano plane illustrating the multiplication rules for the

imaginary unit octonionse1, . . . ,e7 in our conventions. For each triple

ei , ej and ek connected by a solid line, the result of the multiplication

eiej is equal to +ek (−ek) when going along (against) thearrows. The

dashed lineshavebeen added to guidetheeyein following each triplet

cycle.

consider three of the five exceptional Lie groups: G2 in

this section, F4 in Section 5, and E6 in Section 6. These

exceptional Lie groups have found various applications

in high energy physics in the context of gauge theories

and model building [8, 14, 16, 33–39]. Given the

significant mathematical complexity of these groups,

our ability to successfully derive their algebras attests

to the robustness and generality of our ML techniques.

The smallest exceptional Lie group is theG2 group,

which hasrank 2and dimension 14. Thisgroup emerges

astheautomorphism group of theoctonion algebra [40].

An octonion o is a linear combination

o =

7X

i=0

x(i)ei (10)

of the unit octonions ei with real coefficients x(i). Here

e0 is the real element which obeys e2
0

= +1 and can

be identified with the real number 1. The remaining

e1, . . . ,e7 are the seven imaginary unit octonions which

obey e2
i = −1. Their multiplication rules can be

visualized in the Fano plane of Figure 3. The figure

shows only one of 480 possibledefinitions for octonion

multiplication with e0 = 1; the other definitions are

isomorphic and can be obtained by permuting and/or

changing the signs of the imaginary basis elements.

The group G2 has a fundamental representation of

dimension 7, hence in this section x 2 R7. The

components of the feature vector x will be identified

Figure 4: A pictorial visualization of the rank three tensor D i jk

defined in Eq. (12). Each plane represents a slice at a fixed i =

0,1, . . . , 7 (from left to right). The blue, red and grey boxes indicate

coefficient values of +1, −1 and 0, respectively.

with the coefficients x(i), i = 1, . . . , 7, of the imaginary

unit octonions in (10). Correspondingly, the generators

{J} will be real 7⇥7 matrices.

In general, the exceptional groups preserve K

vector oracles ' (1), . . . , ' (K), where each component

' (i) represents an invariant polynomial characteristic

of the group. The group G2 preserves K = 2 such

polynomials. The first one is the norm of a purely

imaginary octonion,

'
(1)
G2

(x) =

7X

i=1

x(i) 2
. (11)

To define the second oracle, we need to introduce the

real part of the product of three octonions o1, o2 and o3

Re o1o2o3 =

7X

i, j,k=0

D i jk x
(i)

1
x

( j)

2
x

(k)

3
. (12)

Using the multiplication rules from Figure 3, the

components of the rank three tensor D i jk can be easily

derived and are shown in Figure 4. The group G2

preserves the real component of the product of three

purely imaginary octonions, hence thesecondG2 oracle

is (note that the sums start from 1 instead of 0)

'
(2)
G2

(x1, x2, x3) =

7X

i, j,k=1

D i jk x
(i)

1
x

( j)

2
x

(k)

3
. (13)

For the training of the G2 generators, we use m =

900 samples (7-dimensional vectors in R7) and fix " =

10−3. For the computation of the second oracle (13) we

split the sample into three equally sized groups of 300,

from which we draw the three vectors x1, x2 and x3.

Thetraining wasdonewith theAdamoptimizer [41] for

1,000 epochs and with learning rate of 2.5⇥10−2.

Our results for thelearnedG2 generatorsareshown in

Figure 5. The panels in the top two rows depict the 14

generators found by the greedy algorithm (as expected,

5

Real component of a triple octonion product
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to the robustness and generality of our ML techniques.

The smallest exceptional Lie group is theG2 group,

which hasrank 2and dimension 14. Thisgroup emerges
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polynomials. The first one is the norm of a purely

imaginary octonion,
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components of the rank three tensor D i jk can be easily

derived and are shown in Figure 4. The group G2

preserves the real component of the product of three
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For the training of the G2 generators, we use m =

900 samples (7-dimensional vectors in R7) and fix " =

10−3. For the computation of the second oracle (13) we

split the sample into three equally sized groups of 300,

from which we draw the three vectors x1, x2 and x3.

Thetraining wasdonewith theAdamoptimizer [41] for

1,000 epochs and with learning rate of 2.5⇥10−2.

Our results for thelearnedG2 generatorsareshown in

Figure 5. The panels in the top two rows depict the 14

generators found by the greedy algorithm (as expected,

5

Two oracles:

Sparse
version*

Non-sparse
version

*sparser than 
on Wikipedia



The F4 group
• There are three oracles
• n=27 dimensional real 

feature space
• F4 has 52 generators
• Our result matches 

previous results in the 
literature obtained with 
Mathematica



The E6 group
• For E6 only the last oracle applies => E6 contains F4 as a subgroup

– The additional 26 generators beyond those of F4 are shown below

• Our results match those previously derived with Mathematica



Speeding up the learning process
• A: learning all symmetry generators at once

– pro: we can ensure closure
– con: slow in high dimensions or for many 

symmetries

• B: learn one symmetry generator at a time
– pro: much faster 
– con: delay the study of group properties to a post-

processing stage

• Timing tests for SU(n):
Algor ithm 2: The Lie bracket trick (LBT) algorithm.

1 Input: {J1, . . . , Ji}: known algebra; Ji+1: new

generator;

2 append Ji+1 toG;

3 repeat

4 k  |G|;

5 i  |J|;

6 append G to J;

7 clear G;

8 for p from 1 to i do

9 for q from i+1 to i+k do

10 C  JpJq − JqJp;

11 C  C−
P
g2J

g

||g||
⇥(C ·g);

12 if ||C|| , 0 then

13 C  C
||C||

;

14 if Linv(C, x) < Lmin then

15 append C to G;

16 end

17 end

18 end

19 end

20 until |G| = 0;

close in the current set {J}. We note that when using

the two algorithms 1 and 2 together, one should choose

judiciously the respective values of the loss thresholds

Lmin.

3.3. Sparsification

Supposewehavealready found aset of Ng generators

J↵, ↵ = 1, 2, . . . ,Ng. We can transform them to a new

sparse basis, J̃↵, by rotating with an orthogonal Ng⇥Ng
matrix O,

J̃↵(O) = O↵βJβ. (8)

In analogy to (A.4), the loss function for the

sparsification of the generators can bedefined as

Lsp(O) =

NgX

↵=1

nX

j, j0=1
k,k0=1

J̃
( jk)
↵ (O)J̃

( j0k0)
↵ (O)

⇣
1− δj j0δkk0

⌘
. (9)

It takes into account all possible pairs of entries in each

transformed generator J̃↵. We minimize over this loss

to obtain the desired orthogonal transformation O, and

subsequently, apply this transformation to the original

generators J↵ to find the sparse generators J̃↵ as in (8).

n

Figure2: Comparison of the running times of thedi↵erent algorithms

in finding the full algebras of theU(n) family: the standard algorithm

[31] (bluesquares), thegreedy algorithm 1 (orangediamonds) and the

Lie bracket trick algorithm 2 (green circles).

3.4. Timing tests

The main advantage of the two new algorithms is

that they significantly speed up the training procedure.

To quantify this improvement, in Figure 2 we present

the results from timing tests on a personal laptop

for di↵erent U(n) groups, using the three approaches

discussed earlier: the standard algorithm [31] (blue

squares), thegreedy algorithm 1 (orangediamonds) and

theLBT algorithm 2 (green circles). Theplot shows the

time in seconds that it took to learn all n2 generators for

the U(n) group, as a function of the dimension n, at a

learning rate 2.5⇥10−2. The generators were found in

sparse form by applying the post-processing step from

Section 3.3, whose duration was included in the total

time shown in Figure 2. Weobserve that for small n the

performance of all three methods is comparable, but for

largen the new methods o↵er significant improvement.

In particular, for n ⇠ 10 the standard method would

require training for days, while thenew methods reduce

the training time to less than a minute.

4. The Exceptional Group G2

The ML approach described in the previous two

sections can be used to discover the orthogonal groups

O(n) [29] and theunitary groupsU(n) [31]. Themethod

can also be generalized to the case of vector (i.e.,

multicomponent) oracles [30]. We shall now apply it

to exceptional (non-classical) Lie algebras, which have

relatively largenumber of generators, and would benefit

from the speed-up o↵ered by the new algorithms. We

4

n
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Summary and Future Directions  

• We have a method (and a public python code) to 
derive the symmetry algebra of a labelled dataset

• Many known results from group theory can be 
rederived and verified (useful teaching tool)
– Orthogonal groups
– Lorentz group
– Unitary groups
– Exceptional groups

• It would be interesting to apply this to real datasets 
and discover unexpected or unknown symmetries
– The MNIST example sets the blueprint

• Experimental mathematics is a lot of fun!



Main References
• The papers

• The python code



BACKUP SLIDES



Symbolic Learning

Theory Theory + DETSIM



Feature Engineering with Machine Learning 

Franceschini,Kim,Kong,KM,Park,Shyamsundar RMP 2023



Machine-Learned Event Variables
• Let’s ask the machine to learn a good event variable 

Kim, Kong, KM, Park, Shyamsundar (2021)



Example 1: Drell-Yan events

1000 1500 2000 2500 3000

Artificial variable V

0.0

0.2

0.4

0.6

0.8

1.0

× 10− 2

mA = 200

mA = 280

mA = 320

mA = 400

• Feed the momenta of the two leptons, ask the machine to 
guess if they came from a resonance A with a mass MA

Kim, Kong, KM, Park, Shyamsundar (2021)



Example 2: leptonic W events

• Feed the MET vector (transverse momentum of C) and the 
momentum of the lepton (b), ask the machine to guess if 
the event came from a resonance A with a mass MA

0 200 400 600

Artificial variable V

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8
× 10− 2

mA = 200; mC = 100

mA = 280; mC = 100

mA = 320; mC = 100

mA = 400; mC = 100

Kim, Kong, KM, Park, Shyamsundar (2021)



Example 3: leptonic W-pair events

• Feed the MET vector (net transverse momentum of 
the two C’s) and the momentum of the two leptons 
(b’s), ask the machine to guess if the event came from 
the pair production of resonances A with a mass MA

0 200 400 600

Artificial variable V

0.0

1.0

2.0

3.0

4.0

5.0

× 10− 3

mA = 200; mC = 100

mA = 280; mC = 100

mA = 320; mC = 100

mA = 400; mC = 100

Kim, Kong, KM, Park, Shyamsundar (2021)



• Truth: the model fits the existing experimental data

– A measurement of an observable O places a constraint on the 
model parameters pi (dashed line)

• Beauty: a subjective criterion influenced by personal 
preferences, community views, etc.

– We consider examples where beauty can be quantified (z-axis)

• Examples of theory models:
– 1: beautiful and wrong

– 2: beautiful and true

– 3: ugly and true

– 4: ugly and wrong

1

2

3
4

*Matchev, Matcheva, Ramond, Verner 2023
Accepted at NeurIPS 2023 (poster)

Truth and Beauty in Particle Theory



• In each run, inputs are re-sampled 
within the experimental errors 

• The training results in low values of 
the total loss (10 runs, right plot)

• Pictorial representation of the 
result from a typical run:

L<10-4

Beauty = Uniformity
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