Study of the ITS cluster size of tracked cascades **ALICE-EPIC Meeting** 30 April 2025

Alberto Calivà, Francesca Ercolessi

Introduction and Physics Motivation

ITS cluster size could be used for track-by-track identification of Ξ^{\pm} candidates

Measurement of Ξ^{\pm} -nucleus (Si) elastic scattering

ITS Cluster Size

J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002

Schematic cross section of a MAPS pixel

Electrons in the depletion region drift toward the NWELL diode, generating a signal Some carriers diffuse to neighboring diodes, forming a cluster Cluster size is proportional to ionization (similar to dE/dx behavior)

Charged particles crossing the silicon sensor create electron-hole pairs (~60 e-/µm for MIPs)

The Strangeness Tracker

Cascade reconstructed from its weak decay daughters

Strangeness tracker associates hits in inner ITS layers compatible with the cascade trajectory

Data Set and Event Selection

Dataset: LHC220 pass7 minBias small

Event selection

- Sel8
- |*z*_{vtx}| < 10 cm

Number of selected events = 2.32×10^9

Analysis task: https://github.com/AliceO2Group/O2Physics/blob/master/PWGLF/Tasks/QC/ trackedCascadeProperties.cxx

Candidate Selection

Invariant mass selections:

• Ξ candidates: $1.315 < m_{\Xi} < 1.328 \text{ GeV}/c$

■ Ω candidates: $1.665 < m_{\Omega} < 1.680 \text{ GeV}/c + m_{\Xi} \notin [1.315, 1.328] \text{ GeV}/c$

GeV/c $\text{GeV}/c + m_{\Xi} \notin [1.315, 1.328] \text{ GeV}/c$

Invariant Mass Distributions

counts

Central core of the distributions fitted with a Gaussian function

Extraction of pole mass and resolution

Invariant Mass vs. Momentum

Pole mass very close to the PDG value for both Ξ and Ω

Invariant Mass Resolution

resolution

mass

Invariant mass resolution (σ of gaussian core) pprox 0.2% for both Ξ and Ω Values in GeV/c^2 in backup

Correction for Geometrical Effects

• $\beta \gamma = p/M_{PDG}$ • $\lambda = \text{track inclination wrt vertical}$ $\rightarrow \cos(\lambda) = \frac{p_{T}}{p}$ used to correct for trivial geometrical effects

Cluster Size Distribution

Distribution is asymmetric

 \rightarrow fitted with Gaussian + exp tail (formally identical to TOF signal function)

Charge Independence

<ITS cluster size · cos(λ)> behaves similarly to dE/dx (as expected) Cluster size is charge independent for both Ξ and Ω

Resolution of the Cluster Size Distribution

Results

Results

- New ITS provides particle identification via <ITS cluster size $\cdot \cos(\lambda)$ > \rightarrow behaves similarly as the Bethe Bloch
- This allows, for the first time, to identify cascades on a track-by-track basis

Decay Radius

■ Cascade decay radius as low as ~ 3 cm ■ However, $n_{\rm ITS}^{\rm cls} \ge 4$ for tracked cascades

Layer	Barrel Segment	Radius (cm)
0	Inner Barrel	2.2
1	Inner Barrel	2.8
2	Inner Barrel	3.6
3	Middle Layer	20.0
4	Middle Layer	22.0
5	Outer Layer	37.0
6	Outer Layer	39.0

Bias in the Cluster Size Calculation

- ITS hits of bachelor track closer to decay point might be wrongly associated to the tracked cascade
- Removed after refit but still associated to the ITStrack \rightarrow bias in the cluster size calculation!
- Fixed for future apass, but present up to apass1 of 2024

Temporary fix: calculate cluster size using only hits in ITS layers with radius < decay radius https://github.com/AliceO2Group/O2Physics/pull/11018

Backup slides

Tau parameter

The parameter τ is constrained in the range $0.7 < \tau < 0.9$

Ь

Ь

Invariant mass resolution

Average Cls Size Calculation

for (const auto& trackedCascade : trackedCascades) {

```
const auto track = trackedCascade.track as<FullTracks>();
const auto trackITS = trackedCascade.itsTrack as<FullTracks>();
const auto& casc = trackedCascade.cascade();
const auto& btrack = casc.bachelor as<FullTracks>();
double dx = trackedCascade.decayX();
double dy = trackedCascade.decayY();
double r = std::sqrt(dx * dx + dy * dy);
int nClsCascade = findBin(edgesItsLayers, r);
// Calculate (Average) Cluster Size
double averageClusterSize(0);
int nCls(0);
for (int i = 0; i < nClsCascade; i++) {</pre>
  int clusterSize = trackITS.itsClsSizeInLayer(i);
  averageClusterSize += static cast<double>(clusterSize);
  if (clusterSize > 0)
   nCls++;
averageClusterSize = averageClusterSize / static cast<double>(nCls);
```


Results

