

Chiral dynamics: from hadrons to nuclei

Outline

- Introduction
- Nuclear forces from χEFT: State of the art
- Three-nucleon force & πN dynamics
- Light nuclei on the lattice
- Summary & outlook

Quantum Chromodynamics (QCD)

The roadmap: QCD \rightarrow Chiral EFT \rightarrow hadron dynamics

nucleon

nucleus

Chiral perturbation theory

 \longrightarrow \mathcal{L}_{QCD} is approx. $SU(2)_L x SU(2)_R$ invariant

Chiral perturbation theory

• Ideal world [$m_u = m_d = 0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)

• Real world [m_u , $m_d \ll \Lambda_{QCD}$], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

expand about the ideal world (ChPT)

Chiral perturbation theory

Effective Lagrangian for hadronic DOF (π , N, ...) Chiral symmetry!

• Low-energy observables computable via a perturbative expansion in $Q = \frac{p \sim M_{\pi}}{\Lambda_{\chi}}$ Weinberg '79 hard scale that enters L_i

At any order Q^n , a finite number of (unknown) LECs contribute

Pion scattering lengths in ChPT

Predictive power?

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \mathcal{L}_{\pi}^{(6)} + \dots$$

of LECs increasing...

S-wave $\pi\pi$ scattering length

LO: $a_0^0 = 0.16$ (Weinberg '66)

NLO:
$$a_0^0 = 0.20$$
 (Gasser, Leutwyler '83)

NNLO: $a_0^0 = 0.217$ (Bijnens et al. '95)

NNLO + disp. relations: (Colangelo et al.)

 $a_0^0 = 0.217 \pm 0.008 \,(\text{exp}) \pm 0.006 \,(\text{th})$

Two and more nucleons

The roadmap: QCD \rightarrow Chiral Perturbation Theory \rightarrow hadron dynamics

NN interaction is strong, resummations/nonperturbative methods needed...

Simplification: nonrelativistic problem ($|\vec{p_i}| \sim M_{\pi} \ll m_N$) \rightarrow the QM A-body problem Weinberg '91

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

- unified description of ππ, πN and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Nuclear forces: State of the art

(numerical estimations based on Pudliner et al. PRL 74 (95) 4396)

Chiral expansion of the NN force

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98, '03; Kaiser '99-'01; Higa, Robilotta '03; ...

+ isospin-breaking corrections...

van Kolck et al. '93,'96; Friar et al. '99,'03,'04; Niskanen '02; Kaiser '06; E.E. et al. '04,'05,'07; ...

Nucleon-nucleon scattering at N³LO

Neutron-proton differential cross section and analyzing power at

 $E_{lab} = 50 \text{ MeV}$ 0.3 EGM N³LO 20 EM N³LO $d\sigma/d\Omega$ (mb sr⁻¹) CD Bonn 2000 0.2 Gross & Stadler 2008 – Nijmegen PWA Å 16 0.1 12 n 0 60 120 180 60 120 180 θ (degrees) θ (degrees)

Deuteron observables

	$N^{3}LO$	Exp
$\begin{array}{c} E_{\rm d} \ [{\rm MeV}] \\ A_S \ [{\rm fm}^{-1/2}] \\ \eta_{\rm d} \end{array}$	$\begin{array}{c} -2.216\ldots -2.223 \\ 0.882\ldots 0.883 \\ 0.0254\ldots 0.0255 \end{array}$	-2.224575(9) 0.8846(9) 0.0256(4)

Three-nucleon force

Some indications of the 3NF

- ³H binding energy calculated based on V_{NN} is typically underbound by ~ 1 MeV
- Three-nucleon continuum...

Phenomenological 3NF models

Fugita-Miyazawa, Tucson-Melbourne, Brasil, Urbana IX, Illinois, ...

from: Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301

Chiral 3NF & nd elastic scattering

3NF first appears ar N²LO

The LECs D,E can be fixed e.g. from ³H BE and nd doublet scattering length EE, Nogga et al.

Nd elastic cross sections at low energies

Nd elastic scattering at E_N =90 MeV

p-³He differential cross section

(the LECs D,E are tuned to the ³H and ⁴He binding energies)

Chiral 3NF and nuclear structure

Chiral 3NF beyond N²LO (work in progress)

3NF topologies up to N⁴LO (subleading one-loop order)

- start contributing at N²LO
- fairly restricted operator structure
- also included in various models

- first appear at N³LO
- rich operator structure
- parameter-free
- not converged (Δ-effects are missing)
 - → need to go to higher orders and/or Δ-full EFT... Gasparyan, EE, Krebs, work in progress...
- First corrections to the leading 3NF (at N³LO) are worked out Ishikawa, Robilotta, PRC76 (07); Bernard, EE, Krebs, Meißner, PRC77 (08); PRC84 (11)
- Implementation in progress (numerical partial wave decomposition: JUROPA@FZJ)
 Skibinski et al., PRC84 (11); work in progress...

Effective Lagrangian needed to compute 3NF at N⁴LO

$$\begin{split} \mathcal{L}_{\pi N}^{(1)} &= N_{v}^{\dagger} \bigg[iv \cdot \partial - \frac{1}{4F^{2}} \tau \times \pi \cdot (v \cdot \partial \pi) + \frac{8\alpha - 1}{16F^{4}} \pi \cdot \pi \tau \times \pi \cdot (v \cdot \partial \pi) \\ &\quad - \frac{\dot{g}_{A}}{P^{7}} \tau \cdot (S \cdot \partial \pi) + \frac{\dot{g}_{A}}{2F^{3}} \left((4\alpha - 1)\tau \cdot \pi \pi \cdot (S \cdot \partial \pi) + 2\alpha\pi^{2}\tau \cdot (S \cdot \partial \pi) \right) \bigg] N_{v} + \dots, \\ \mathcal{L}_{\pi N}^{(2)} &= N_{v}^{\dagger} \bigg[4M^{2}c_{1} - \frac{2}{F^{2}}c_{1}M^{2}\pi^{2} + \frac{1}{F^{2}} \bigg(c_{2} - \frac{g_{A}^{2}}{8m} \bigg) (v \cdot \partial \pi) \cdot (v \cdot \partial \pi) + \frac{1}{F^{2}}c_{3}(\partial_{\mu}\pi) \cdot (\partial^{\mu}\pi) \\ &\quad - \frac{i}{F^{2}} \bigg(c_{4} + \frac{1}{4m} \bigg) \bigg[S_{\mu}, S_{\nu} \bigg] \tau \times (\partial^{\nu}\pi) \cdot (\partial^{\mu}\pi) + \frac{M^{2}c_{1}}{2F^{4}} (8\alpha - 1)(\pi \cdot \pi)^{2} + \frac{c_{3}}{F^{4}} \left((1 - 4\alpha)\pi \cdot \partial_{\mu}\pi \pi \cdot \partial^{\mu}\pi \right) \\ &\quad - 2\alpha\pi \cdot \pi \partial_{\mu}\pi \cdot \partial^{\mu}\pi - \frac{ic_{4}}{2F^{4}} \left(2\left(1 - 4\alpha \right)\tau \cdot (\pi \times \partial_{\mu}\pi)\pi \cdot \partial_{\nu}\pi - 4\alpha\pi \cdot \pi \partial_{\mu}\pi \cdot (\tau \times \partial_{\nu}\pi) \right) \left[S^{\mu}, S^{\nu} \right] + \frac{\vec{\nabla}^{2}}{2m} \\ &\quad + \frac{i\dot{\partial}_{A}}{2Fm} \bigg(\tau \cdot (v \cdot \partial S \cdot \partial \pi) + 2\tau \cdot (v \cdot \partial \pi)S \cdot \partial \bigg) + \frac{i}{8F^{2}m} \bigg(\tau \cdot (\pi \times (\vec{\nabla}^{2}\pi)) + \tau \cdot (\pi \times \vec{\nabla}\pi)\vec{\nabla} \bigg) \bigg] N_{v} + \dots, \\ \mathcal{L}_{\pi N}^{(3)} &= N_{v}^{\dagger} \bigg[\frac{2}{F^{2}} \bigg(d_{1} + d_{2} - \frac{c_{4}}{4m} \bigg) \tau \times (\partial_{\mu}v \cdot \partial \pi) \right] \cdot (\partial^{\mu}\pi) + \frac{2}{F^{2}}d_{3}\tau \times ((v \cdot \partial)^{2}\pi) \cdot (v \cdot \partial \pi) - \frac{4}{F^{2}}d_{5}M^{2}\tau \times \pi \cdot (v \cdot \partial \pi) \\ &\quad - \frac{2i}{F^{2}}(d_{14} - d_{15}) \bigg[(S \cdot \partial v \cdot \partial \pi), (S \cdot \partial \pi) \bigg] - \frac{2}{F} (2d_{16} - d_{18})M^{2}\tau \cdot (S \cdot \partial \pi) \\ &\quad + \frac{ic_{2}}{F^{2}m} \bigg((v \cdot \partial \pi) \cdot (\partial_{\mu}\pi))\vec{\partial}^{\mu} - \vec{\partial}^{\mu} (v \cdot \partial \pi) \cdot (\partial_{\mu}\pi) \bigg) - \frac{c_{4}}{2F^{2}m} \bigg(\tau \cdot ((v \cdot \partial \pi) \times (\partial^{2}\pi)) \bigg) \\ &\quad - 2\tau \cdot ((v \cdot \partial \pi) \times (\partial_{\mu}\pi)) [S^{\mu}, S^{\nu}] \vec{\partial}_{\nu} + 2\vec{\partial}_{\nu}\tau \cdot ((v \cdot \partial \pi) \times (\partial_{\mu}\pi)) [S^{\mu}, S^{\nu}] \bigg) \bigg) \bigg] N_{v} + \dots, \\ \mathcal{L}_{\pi N}^{(4)} &= N_{v}^{\dagger} \bigg[2(8e_{38} + e_{115} + e_{116})M^{4} - \frac{i}{F^{2}} \bigg[S_{\mu}, S_{\nu} \bigg] \bigg(- 18e_{17}\tau \times (\partial^{\mu}\partial^{\mu}\pi) \cdot (\partial_{\mu}\partial^{\mu}\pi) + e_{18}\tau \times (v \cdot \partial\partial^{\mu}\pi) \cdot (v \cdot \partial\partial^{\nu}\pi) \\ &\quad + 4(2e_{21} - e_{37})M^{2}\tau \times (\partial^{\nu}\pi) \cdot (\partial^{\mu}\pi) \bigg) + 8e_{14}(\partial_{\mu}\partial_{\nu}\pi) \cdot (\partial^{\mu}\pi) + 8e_{15}(v \cdot \partial_{\mu}\pi) \cdot (v \cdot \partial\pi^{\mu}\pi) \\ &\quad + 8e_{16}((v \cdot \partial)^{2}\pi) \cdot ((v \cdot \partial)^{2}\pi) + 4M^{2}(2e_{19} - e_{22} - e_{36})(\partial_{\mu}\pi^{\mu}) \cdot (\partial^{\mu}\pi) + 8e_{20}M^{2}(v \cdot \partial\pi) \cdot (v \cdot \partial\pi) \\ &\quad - 4e_{22}M^{2}\tau \cdot (\partial_{\mu}\partial^{\mu}\pi) - 8e_{35$$

The TPE 3NF has the form (modulo 1/m-terms):

 $V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_{\pi}^2] [q_2^2 + M_{\pi}^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$

• leading-order: $\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F^4} \left((2c_3 - 4c_1)M_\pi^2 + c_3q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2c_4}{8F^4}$ van Kolck '94

$$\vec{p}_1'$$
 \vec{p}_2' \vec{p}_3'
 \vec{p}_1 \vec{p}_2 \vec{p}_3

,

subleading

$$\mathcal{J}: \qquad \mathcal{A}^{(4)}(q_2) = \frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(2M_\pi^4 + 5M_\pi^2 q_2^2 + 2q_2^4 \right) + \left(4g_A^2 + 1 \right) M_\pi^3 + 2 \left(g_A^2 + 1 \right) M_\pi q_2^2 \Big], \\ \mathcal{B}^{(4)}(q_2) = -\frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(4M_\pi^2 + q_2^2 \right) + (2g_A^2 + 1)M_\pi \Big] \qquad \begin{array}{l} \text{Ishikawa, Robilotta '07} \\ \text{Bernard, EE, Krebs, Meißner '08} \end{array}$$

sub-subleading:

Gasparvan, EE, Krebs '12

$$\begin{aligned} \mathcal{A}^{(5)}(q_2) &= \frac{g_A}{4608\pi^2 F_{\pi}^6} \Big[M_{\pi}^2 q_2^2 (F_{\pi}^2 \left(2304\pi^2 g_A (4\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{22} - \bar{e}_{36}) - 2304\pi^2 \bar{d}_{18} c_3 \right) \\ &+ g_A (144c_1 - 53c_2 - 90c_3)) + M_{\pi}^4 \left(F_{\pi}^2 \left(4608\pi^2 \bar{d}_{18} (2c_1 - c_3) + 4608\pi^2 g_A (2\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{36} - 4\bar{e}_{38}) \right) \\ &+ g_A \left(72 \left(64\pi^2 \bar{l}_3 + 1 \right) c_1 - 24c_2 - 36c_3 \right) \right) + q_2^4 \left(2304\pi^2 \bar{e}_{14} F_{\pi}^2 g_A - 2g_A (5c_2 + 18c_3) \right) \Big] \\ &- \frac{g_A^2}{768\pi^2 F_{\pi}^6} L(q_2) \left(M_{\pi}^2 + 2q_2^2 \right) \left(4M_{\pi}^2 (6c_1 - c_2 - 3c_3) + q_2^2 (-c_2 - 6c_3) \right) , \\ \mathcal{B}^{(5)}(q_2) &= -\frac{g_A}{2304\pi^2 F_{\pi}^6} \Big[M_{\pi}^2 \left(F_{\pi}^2 \left(1152\pi^2 \bar{d}_{18} c_4 - 1152\pi^2 g_A (2\bar{e}_{17} + 2\bar{e}_{21} - \bar{e}_{37}) \right) + 108g_A^3 c_4 + 24g_A c_4 \right) \\ &+ q_2^2 \left(5g_A c_4 - 1152\pi^2 \bar{e}_{17} F_{\pi}^2 g_A \right) \Big] + \frac{g_A^2 c_4}{384\pi^2 F_{\pi}^6} L(q_2) \left(4M_{\pi}^2 + q_2^2 \right) \end{aligned}$$

Gasparyan, EE, Krebs '12

- all relevant (combinations of) LECs are determined from πN scattering
- extracted LECs are fairly stable (KH vs GW PWA) and of a reasonably natural size
- reasonably good convergence of HB ChPT (consistent with Fettes, Meißner '00)

Most general structure of a local 3NF

Gasparyan, EE, Krebs, in preparation

What is the relative size of the TPE topology compared to other long-range terms?

Generators \mathcal{G} of 89 independent operators	S	A	G_1	G_2	$G_1(12)$	$G_2(12)$
1	\mathcal{O}_1	-	-	-	-	-
$oldsymbol{ au}_1\cdotoldsymbol{ au}_2$	\mathcal{O}_2	-	\mathcal{O}_3	\mathcal{O}_4	-	-
$ec{\sigma_1}\cdotec{\sigma_3}$	\mathcal{O}_5	-	\mathcal{O}_6	\mathcal{O}_7	-	-
$oldsymbol{ au}_1\cdotoldsymbol{ au}_3ec{\sigma}_1\cdotec{\sigma}_3$	\mathcal{O}_8	-	\mathcal{O}_9	\mathcal{O}_{10}	-	-
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{\sigma}_1\cdotec{\sigma}_2$	\mathcal{O}_{11}	\mathcal{O}_{12}	\mathcal{O}_{13}	\mathcal{O}_{14}	\mathcal{O}_{15}	\mathcal{O}_{16}
$oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot (ec{\sigma}_2 imes ec{\sigma}_3)$	\mathcal{O}_{17}	-	-	-	-	-
$oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_2 \cdot (ec{q}_1 imes ec{q}_3)$	\mathcal{O}_{18}	I	\mathcal{O}_{19}	\mathcal{O}_{20}	-	I
$ec{q_1}\cdotec{\sigma}_1ec{q_1}\cdotec{\sigma}_3$	\mathcal{O}_{21}	\mathcal{O}_{22}	\mathcal{O}_{23}	\mathcal{O}_{24}	\mathcal{O}_{25}	\mathcal{O}_{26}
$ec{q_1}\cdotec{\sigma}_3ec{q_3}\cdotec{\sigma}_1$	\mathcal{O}_{27}	-	\mathcal{O}_{28}	\mathcal{O}_{29}	-	-
$ec{q_1}\cdotec{\sigma}_1ec{q_3}\cdotec{\sigma}_3$	\mathcal{O}_{30}	I	\mathcal{O}_{31}	\mathcal{O}_{32}	-	-
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_1\cdotec{\sigma}_1ec{q}_1\cdotec{\sigma}_2$	\mathcal{O}_{33}	\mathcal{O}_{34}	\mathcal{O}_{35}	\mathcal{O}_{36}	\mathcal{O}_{37}	\mathcal{O}_{38}
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_1\cdotec{\sigma}_1ec{q}_3\cdotec{\sigma}_2$	\mathcal{O}_{39}	\mathcal{O}_{40}	\mathcal{O}_{41}	\mathcal{O}_{42}	\mathcal{O}_{43}	\mathcal{O}_{44}
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{ au}_3\cdotec{ au}_1ec{q}_1\cdotec{ au}_2$	\mathcal{O}_{45}	\mathcal{O}_{46}	\mathcal{O}_{47}	\mathcal{O}_{48}	\mathcal{O}_{49}	\mathcal{O}_{50}
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{ au}_3\cdotec{ au}_1ec{q}_3\cdotec{ au}_2$	\mathcal{O}_{51}	\mathcal{O}_{52}	\mathcal{O}_{53}	\mathcal{O}_{54}	\mathcal{O}_{55}	\mathcal{O}_{56}
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q_1}\cdotec{\sigma}_2ec{q_1}\cdotec{\sigma}_3$	\mathcal{O}_{57}	-	\mathcal{O}_{58}	\mathcal{O}_{59}	-	-
$\boldsymbol{\tau}_2\cdot\boldsymbol{\tau}_3\vec{q_3}\cdot\vec{\sigma}_2\vec{q_3}\cdot\vec{\sigma}_3$	\mathcal{O}_{60}	\mathcal{O}_{61}	\mathcal{O}_{62}	\mathcal{O}_{63}	\mathcal{O}_{64}	\mathcal{O}_{65}
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q_1}\cdotec{\sigma}_2ec{q_3}\cdotec{\sigma}_3$	\mathcal{O}_{66}	I	\mathcal{O}_{67}	\mathcal{O}_{68}	-	-
$oldsymbol{ au}_1\cdot(oldsymbol{ au}_2 imesoldsymbol{ au}_3)ec{\sigma}_1\cdotec{\sigma}_2ec{\sigma}_3\cdot(ec{q}_1 imesec{q}_3)$	\mathcal{O}_{69}	-	\mathcal{O}_{70}	\mathcal{O}_{71}	-	-
$oldsymbol{ au}_1\cdot(oldsymbol{ au}_2 imesoldsymbol{ au}_3)ec{\sigma}_3\cdotec{q}_1ec{q}_1\cdot(ec{\sigma}_1 imesec{\sigma}_2)$	\mathcal{O}_{72}	\mathcal{O}_{73}	\mathcal{O}_{74}	\mathcal{O}_{75}	\mathcal{O}_{76}	\mathcal{O}_{77}
$oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 \overline{oldsymbol{ au}}_3) ec{\sigma}_1 \cdot ec{q}_1 ec{\sigma}_2 \cdot ec{q}_1 ec{\sigma}_3 \cdot (ec{q}_1 imes ec{q}_3)$	\mathcal{O}_{78}	\mathcal{O}_{79}	\mathcal{O}_{80}	\mathcal{O}_{81}	\mathcal{O}_{82}	\mathcal{O}_{83}
$oldsymbol{ au}_1\cdot(oldsymbol{ au}_2 imesoldsymbol{ au}_3)ec{\sigma}_1\cdotec{q}_3ec{\sigma}_2\cdotec{q}_3ec{\sigma}_3\cdot(ec{q}_1 imesec{q}_3)$	\mathcal{O}_{84}	-	\mathcal{O}_{85}	\mathcal{O}_{86}	-	-
$\boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 ~\overline{\boldsymbol{\times}} \boldsymbol{\tau}_3) \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2 \cdot \vec{q}_3 \vec{\sigma}_3 \cdot (\vec{q}_1 \times \vec{q}_3)$	\mathcal{O}_{87}	-	\mathcal{O}_{88}	\mathcal{O}_{89}	-	_

Most general, local 3NF involves 89 operators, can be generated (by permutations) from 22 structures:

$$V_{3N}^{\text{loc.}} = \sum_{i=1}^{22} \mathcal{G}_i + 5 \text{ perm.}$$

The generators G_i are defined as:

$$S(\mathcal{O}) := \frac{1}{6} \sum_{P \in S_3} P\mathcal{O}$$
$$A(\mathcal{O}) := \frac{1}{6} \sum_{P \in S_3} (-1)^P P\mathcal{O}$$
$$G_2(\mathcal{O}) := \frac{\sqrt{3}}{2} [S_{23}S_{13} - S_{12}S_{13}] (\mathcal{O})$$
$$G_1(\mathcal{O}) := \left[S_{13} - \frac{1}{2} (S_{23}S_{13} + S_{12}S_{13}) \right] (\mathcal{O})$$

Gasparyan, EE, Krebs, in preparation

Complete long-range 3NF at N⁴LO

Gasparyan, EE, Krebs, in preparation

• predictions based entirely on chiral symmetry + input from πN , benchmarks for lattice-QCD

- implications for Nd, light nuclei & nuclear matter? (work in progress...)
- 2π - 1π and ring topology: already converged? ChPT with explicit Δ 's (work in progress...)

Nuclear Lattice Effective Field Theory collaboration

E.E. (Bochum), Hermann Krebs (Bochum), Timo Lahde (Jülich), Dean Lee (NC State) and Ulf-G. Meißner (Bonn/Jülich)

Discretized version of chiral EFT for nuclear dynamics

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within ChPT}}\right] |\Psi\rangle = E |\Psi\rangle$$

Borasoy, E.E., Krebs, Lee, Meißner, Eur. Phys. J. A31 (07) 105, Eur. Phys. J. A34 (07) 185, Eur. Phys. J. A35 (08) 343, Eur. Phys. J. A35 (08) 357,
E.E., Krebs, Lee, Meißner, Eur. Phys. J A40 (09) 199, Eur. Phys. J A40 (09) 199, Eur. Phys. J A41 (09) 125, Phys. Rev. Lett 104 (10) 142501, Eur. Phys. J. 45 (10) 335, Phys. Rev. Lett. 106 (11) 192501

Calculation strategy

Lattice action (improved to minimize discr. errors, accurate to Q³)

Solve 2N Schröd. Eq. with the spherical wall boundary cond. \implies phase shifts \implies fix the LO and NLO (per-turbatively) contact terms

projection Monte Carlo (with auxiliary fields)

Determine the LECs D, E from ³H and ⁴He BEs \implies the nuclear Hamiltonian completely fixed up to NNLO (Q³)

(Multi-channel) projection Monte Carlo with auxiliary fields

Simulate the ground (and excited) states of light nuclei

Lattice actions

Calculation strategy

Slater determinant of 1N states

• $|\Psi(t')\rangle = (M_{SU(4)})^{L_{t_0}} |\Psi^{init}\rangle$ - cheap, no sign problem (even A) Lee'05,'07; Chen, Lee, Schäfer '04 $L_{t_0}\alpha_t$ transfer matrix (pion-less, SU(4)-inv.): $M_{SU(4)} =: \exp(-H_{SU(4)}\alpha_t):$

- Transition amplitude: $Z_{\text{LO}}(t) = \langle \Psi(t') | (M_{\text{LO}})^{L_t} | \Psi(t') \rangle$ with $M_{\text{LO}} =: \exp(-H_{\text{LO}}\alpha_t) :$
- Ground state energy: $\exp\left(-E_0^{\text{LO}}\alpha_t\right) = \lim_{t\to\infty} Z(t+\alpha_t)/Z(t)$

Ground states of ⁸Be and ¹²C

E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501

Simulations for ⁸Be and ¹²C, L=11.8 fm

Various contributions to ⁴He, ⁸Be and ¹²C

	⁴ He	⁸ Be	¹² C
LO $[O(Q^0)]$	-24.8(2)	-60.9(7)	-110(2)
NLO $[O(Q^2)]$	-24.7(2)	-60(2)	-93(3)
$IB + EM [O(Q^2)]$	-23.8(2)	-55(2)	-85(3)
NNLO [$O(Q^3)$]	-28.4(3)	-58(2)	-91(3)
Experiment	-28.30	-56.50	-92.16

The Hoyle

E.E., Krebs, Lee, Meißner, PRL 106 (

	0_{2}^{+}	$2_1^+, J_z^- = 0$	$2_1^+, J_z^- = 2$
LO $[O(Q^0)]$	-94(2)	-92(2)	-89(2)
NLO $[O(Q^2)]$	-82(3)	-87(3)	-85(3)
$IB + EM [O(Q^2)]$	-74(3)	-80(3)	-78(3)
NNLO [$O(Q^3)$]	-85(3)	-88(3)	-90(4)
Experiment	-84.51	-87	1.72

N

Summary & outlook

Nuclear chiral EFT enters precision era:

- accurate nuclear potentials at N³LO
- detailed analyses of electroweak currents
- high-precision few-N calculations (π N scatt. lengths, radiative/muon capture...)

Time to tackle unsolved problems:

 chiral symmetry + πN = predictions for the long-range structure of the 3NF (work in progress...)

Nuclear lattice simulations:

- exciting results for the ¹²C spectrum (Hoyle state)

Work in progress: structure & quark mass dependence of the Hoyle state,

¹⁶O, volume dependence, ...