Status and Future of the LHC

L. Bottura CERN TE MSC Channeling 2012

September 23-28, 2012, Alghero, Italy

Outline

- Where do we come from
- The present production at the LHC
- The foreseeable LHC future
- Beyond the LHC
- A final message

An insider view And a special eye for technology

Outline

- Where do we come from
- The present production at the LHC
- The foreseeable LHC future
- Beyond the LHC
- A final message

Big Brother is in full control and rules

Fig. 4

^tThe National Reference Design Study (RDS) for a 20 TeV proton machine, hosted by LBNL, DOE recommends proceeding with R&D for a Sine-qua-non Accelerator (the SSC)

Diego Maradona goes to **SSC** (Societa' Sportiva Calcio) Napoli from FC Barcelona for a ridiculous **I3.5 billions** Lire

0630884-024

1984 ECFA – Lausanne

CERN COURIER

Sep 19, 2008

Early days: Lausanne LHC workshop (archive)

In March 1984 a major workshop provided a chance to look to the next step beyond the construction and exploitation of LEP.

G. Brianti

OURIER

CERN 87-05, G. Brianti and K. Hubner Ed.

Approximately 100 contracts and international contributions

LHC !

Injection (GeV) 450 Flat-top (TeV) 7 (km) 26.7 Length **Dipole field** 8.3 Aperture 56 (mm) 1.9 Temperature 2008 Commisioned

What is so special about the LHC ?

Those who made it !

- The highest field accelerator magnets: 8.3 T (9 T ultimate)
- The largest superconducting magnet system: ~8000 magnets (~50000 tons)
- The largest 1.9 K cryogenics installation (superfluid helium)
- A sophisticated and ultra-reliable magnet control and quench protection system

Some of the LHC challenges

Circumference (km)	26.7	100150 m underground
Number of Dipoles	1232	Nb-Ti, 37000 tons cold mass
Dipole Length (m)	14.3	35 tons aligned to 0.3 mm
Dipole Field Strength (Tesla)	8.33	Limit of beam energy (7 TeV)
Operating Temperature (K)	1.9	Super-fluid helium
Current in dipole SC coils (A)	13000	1 ppm resolution
Beam Intensity (A)	0.5	2.2 × 10 ⁻⁶ loss causes quench
Stored Beam Energy (MJ)	2*360	Melt one ton of copper
Magnet Stored Energy (GJ)	≈ 10	Airbus 380 at 700 km/h
Sector Powering Circuit	8	1612 different electrical circuits

September 10th, 2008...

....September 19th, 2008...

Initiated by an unprotected quench of defective joint

NOTE: this is an intentional defect built for testing purposes

...November 30th, 2009...

Outline

- Where do we come from
- The present production at the LHC
- The foreseeable LHC future
- Beyond the LHC
- A final message

LHC operation today

Results from ATLAS

Fabiola Giannotti, ATLAS, Status of the SM Higgs Boson Search, July 4th, 2012

Results from CMS – 1/2

J. Incandela, CMS, Status of the SM Higgs Boson Search, July 4th, 2012

Results from CMS – 2/2

- high sensitivity, high mass resolution channels: γγ+4
 - γγ: 4.1 σ excess
 - 4 leptons: 3.2 σ excess
 - near the <u>same mass</u> 125 GeV

comb. significance 5.0 σ

expected significance
for SM Higgs: 4.7 σ

J. Incandela, CMS, Status of the SM Higgs Boson Search, July 4th, 2012

Characterization of excess near 125 GeV

To be fair, results from Tevatron

Homer Wolfe, CDF, The Search For The Brout-Englert- Higgs Boson, March 7th, 2012

Cuddle your Higgs

HIGGS BOSON

H

No Higgs in Catholic church ?

THE HIGGS BOSON WALKS INTO A CHURCH. THE PRIEST SAYS WE DON'T ALLOW HIGGS BOSONS IN HERE THE HIGGS BOSON SAYS BUT WITHOUT **ME HOW CAN YOU HAVE MASS?**

Somebody is jealous...

A Higgs event in CMS ?

Do not forget heavy ions physics To conclude:

Salgado p-Pb run coming up **Proton-nucleus at the LHC** 1 Tesla = 10⁴ Gauss **How strong?** 1017-1018 Gauss 2/2013 pPb run $\sqrt{eB^{~1}-10} m_{\pi}$: Noncentral heavy-ion coll. at RHIC and LHC **Also strong Yang-Mills** 10¹⁵Gauss a **fields** $\sqrt{aB} \sim 1 - a$ few **GeV** nditions, nuclear PDFs **Magnetars** ice (best experimental option 4x10¹³ Gauss : "Critical" talk P. Newman] magnetic field of electrons $\sqrt{eB_c} = m_e = 0.5 \text{MeV}$ Heavy Ions theory 25

45 Tesla : strongest steady magnetic field (High Mag. Field, Lab. In Florida)

8.3 Tesla : Superconducting magnets in LHC

108 Tesla=1012 Gauss: Typical neutron star surface

Super critical magnetic field may have existed in very early Universe. Maybe after EW phase transition? (cf: Vachaspati '91)

Fascinating physics !

Not always plain sailing...

Beam intensity from weeks 34 and 35 (20th to 29th August 2012)

Luminosity logs from weeks 34 and 35 (20th to 29th August 2012)

LHC luminosity production

- Peak luminosity 7.7 10³³ 1/cm² s
- LHC operation has reached good routine to deliver the promised 15 fb⁻¹ by the end of 2012

What did we learn?

- LHC is **magnetically very reproducible** on a month to month time scale
- High precision of the powering system
 - (8 independent sectors !)
- High availability of the cryogenics and hardware system
- Head on beam-beam limit higher than foreseen
- Aperture better than foreseen
- Not a single magnet quenched due to beam
 - (>3 GJ stored in the magnets)
- Careful increase of the number of bunches and intensities OK (up to 150 MJ per beam)

Concerns of intensity and energy

- Single event upsets (SEU) that depend on beam intensity and luminosity (Radiation to Electronics)
- Localized short losses, commonly referred to as UFOs (Unidentified Falling Objects : dust ?)
- **Beam induced heating** of injection kickers, collimators, beam screens, beam instrumentation, RF fingers, ...
- Electron cloud and dynamic pressure rise at very high bunch intensities

Outline

- Where do we come from
- The present production at the LHC
- The foreseeable LHC future
- Beyond the LHC
- A final message

The predictable future: LHC time-line

2009 Start of LHC

Run 1: 7 TeV centre of mass energy, luminosity ramping up to few 10³³ cm⁻² s⁻¹, few fb⁻¹ delivered

2013/14 LHC shut-down to prepare machine for design energy and luminosity

Run 2: Ramp up luminosity to design (10^{34} cm⁻² s⁻¹), ~50 to 100 fb⁻¹

2017 or 18 Injector and LHC Phase-I upgrades to go to ultimate luminosity

Run 3: Ramp up luminosity to 2.2 x design, reaching ~100 fb⁻¹ / year accumulate few hundred fb⁻¹

~2021/22

Phase-II: High-luminosity LHC. New focussing magnets and CRAB cavities for very high luminosity with luminosity levelling

Run 4: Collect data until > 3000 fb⁻¹

2030

End of the LHC Era ? a Big Party !

By courtesy of R. Heuer CERN DG

LSI scope and schedule

- Repair defective interconnects
- Consolidate all interconnects with new design
- Finish off pressure release valves (DN200)
- Exchange magnets with non-conformities
- Repair He leaks (sectors 3-4 and 4-5)
- Maintenance of all the systems after 3 years operation
- Bring all necessary equipment up to the level needed for 7TeV/beam

10-15 % of interconnections to be opened and to be re-welded100% (10'000) to be consolidated

Schedule is now consolidated, the countdown runs !

13 kA splice consolidation

Consolidated dipole magnets bus splice

Final validation test on a laboratory interconnect: - 13 KA quench - 20 kCycles

- Thermal cycles

Radiation to Electronics (R2E)

- Operation in 2011 has identified most critical equipment
- Mitigation measures integrated "on-the-fly" if and when possible
- 2011/20121: (and Technic
 - Relocation elements
 - Additional : critical area
- Aim for ope is to dodge (no limit to performance

- LSI (2013-2014): relocate & shield all critical areas
 - Beyond LSI: major action required for power converters and other electronics in the tunnel

LS2 (2018): Injector Upgrades

Connect Linac4 to PS Booster,

New PS Booster injection channel

Upgrade PS Booster 1.4 → 2.0 GeV

- New Power Supplies, RF system etc.
- Upgrade transfer lines & instrumentation

Upgrades the PS

- Injection region for 2.0 GeV Injection
- New/Upgraded RF systems
- Upgrades to Feedbacks/Instrumentation

Upgrades to the SPS

- Electron Cloud mitigation strong feedback system, or coating of the vacuum system
- Impedance reduction, improved feedbacks
- Large-scale modification to the main RF system

IIT DS models

- Single aperture demonstrator (MBHSPI) tested at FNAL
- CERN model manufacturing started
- Design of twin aperture in progress

First IIT copper coil winding completed at CERN

LHC luminosity expectations

Lumi plot from M. Lamont (CERN)

High-Luminosity LHC: Goal

 Implement a hardware configuration and a set of beam parameters that will allow to reach a peak luminosity of 5×10³⁴ cm⁻²s⁻¹ with levelling, and integrated luminosity of 250-300 fb⁻¹ per year (10 times the present LHC)

Nb₃Sn knocks at the door

By courtesy of J. Parrell (OST)

LARP HQ (120 mm- 13 T)

Nb3Sn has the potential to give a 50 % benefit in gradient (for the same aperture), or larger aperture (for the same gradient), at much increased temperature margin (factor 2 to 3)

HQ01a-b-c-d-4.4K Training

Tue Apr 26:09:45:58 2011

SC links

By courtesy of A.Ballarino, CERN

Repositioning the converters in the cavern

Role of crab cavities

- RF crab cavities deflect head and tail in opposite directions so that the collision is effectively headon and the luminosity is maximized
- The same principle can be used for luminosity leveling using the crab cavities at variable angle

Outline

- Where do we come from
- The present production at the LHC
- The foreseeable LHC future
- Beyond the LHC
- A final message

Is there a physics beyond the LHC ?

HE-LHC Scope

- "[...] a 33 TeV centre-of-mass energy proton-proton accelerator in the LHC tunnel [...] and the need for new injectors, possibly with 1 TeV energy". (The High-Energy Large Hadron Collider, CERN-2011-003, also EuCARD-Conf-2011-001)
- Technicolor, Supersymmetry, Extra dimensions: "[...] the need to explore the high energy frontier will remain. We will always be able to make that case, today and tomorrow". (Elements of a Physics Case for a High-Energy LHC, J.D. Wells, pp. 1-5, CERN-2011-003, 2011)
- "A project on the scale and innovation level of the HE-LHC has a long preparation lead time". (CERN Accelerator Strategy, S. Myers, pp. 6, CERN-2011-003, 2011)

technicolor

HE-LHC magnet challenges

- 27 km of very high field, accelerator grade magnets
 - 40 mm bore, 20 T dipoles
 - 40 mm bore, 500 T/m arc quadrupoles
 - 50 mm bore, 400 T/m IR quadrupoles
- 7 km of pulsed accelerator magnets with low loss
 - 100 mm bore, 5 T dipoles
- 5.6 km of transfer lines, from a SPS+ to HE-LHC
- Field swing and field quality
- Mechanics, protection, powering and stray field in the constrained LHC tunnel space
- Increased heat loads (e.g. a factor 20 on q_{Synchrotron})
- Cost and material availability
- Dismantle the LHC to make space for the new ring

Technical superconductors

descelptica

A really high field dipole

- Engineering extrapolation is difficult, but does not seem impossible
- May require a genetic mutation in the art of SC magnet design an construction

The big leap: a new tunnel !

Whichever the optimal solution, a vigorous high field magnet R&D should start today

Timeline

 It seems awfully early to talk about the next machine, and yet we are already late if we wish to have continuity !

Outline

- Where do we come from
- The present production at the LHC
- The foreseeable LHC future
- Beyond the LHC
- A final message

Drawing the line, today

- The production of physics material at the LHC proceeds very well, and the physics case for a HL-LHC is strong
- The ensuing demands for technology R&D are many, intellectually interesting, technically challenging, and *urgent*
 - Just on magnets (my toy) we are looking at new materials (Nb₃Sn, HTS), need a technology proof by 2015, production by 2020
 - This will open a new portfolio of applications (laboratory, energy, medical)
- HEP, and the LHC as its latest creation, is an ideal herald of innovation and advancement whose stewardship has an unbeatable record

Have no fear in the future of HEP...

... and thank you for your attention !