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1984...

Big Brother is in full control and rules g

—The National Reference Design
* Study (RDS) for a 20 TeV proton

* machine, hosted by LBNL, DOE
° 7 recommends proceeding with

“ 7 R&D for a Sine-qua-non
Accelerator (the SSC)

Diego Maradona goes to SSC

(Societa’ Sportiva Calcio) NaPOh fI‘Om FC Barcelona
for a ridiculous 13.5 billions Lire




1984 ECFA — Lausanne

CERN COURIER -
Sep 19,2008 . —

Early days: Lausanne LHC workshop (archive)

In March 1984 a major workshop provided a chance to
look to the next step beyond the construction and
exploitation of LEP.

Ome  Chann el Two_Channel (in one crﬁgsﬁf)

4<—Ma3neh‘c Ciccuie»2

\
= e
(@Ww@ U8 wm

3 PP ‘\r
only mainly 0 Iy
I AN

\

=

”igh High Modecate
& &
Modecale Moderate on l}
3, E B.E BE

CERN 87-05, G. Brianti and K. Hubner Ed.




World-Wide Works

Approximately 100 contracts and international contributions
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What is so special about the LHC ?

Those who

made it !

The highest field
accelerator magnets:
8.3T (9T ultimate)

The largest
superconducting
magnet system:
~8000 magnets
(~50000 tons)

The largest 1.9 K
cryogenics installation
(superfluid helium)

A sophisticated and
ultra-reliable magnet
control and quench
protection system



Some of the LHC challenges

Circumference (km)

26.7

100...150 m underground

Number of Dipoles

1232

Nb-Ti, 37000 tons cold mass

Dipole Length (m) 14.3 | 35 tons aligned to 0.3 mm
Dipole Field Strength (Tesla) 8.33 | Limit of beam energy (7 TeV)
Operating Temperature (K) 1.9 | Super-fluid helium

Current in dipole SC coils (A) 13000 | 1 ppm resolution

Beam Intensity (A) 0.5 |2.2 x 10 loss causes quench
Stored Beam Energy (MJ) 2*360 | Melt one ton of copper

Magnet Stored Energy (GJ) =10 | Airbus 380 at 700 km/h

Sector Powering Circuit 8 1612 different electrical circuits
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...September 19, 2008...

Initiated by an unprotected quench of defective joint

W NOTE: this is an intentional defect built for testing purposes
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.November 30t", 2009...
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LHC operation today
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Results from ATLAS

ATLAS
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Results from CMS - 1/2
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J. Incandela, CMS, Status of the SM Higgs Boson Search, July 4", 2012



Results from CMS - 2/2
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To be fair, results from Tevatron
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The “Higgs” is there !?! ™

Découverte

iNajeure




Cuddle your Higgs

HIGGS BOSON

The HIGGS BOSON is
the theoretical particle of
the Higgs mechanism,
which physicists believe
will reveal how all
matter in the universe
gets its mass. Many
scientists hope that the
Large Hadron
Collider in Geneva,
Switzerland, which
collides particles at
99.99% the speed of
light, will detect

the elusive Higgs
y Boson
$1 0 -4 9 PLUS SHIPPING

0000000000000 Wool felt, fleece with gravel fill
LIGHT HEAVY  for maximum mass. woe mcwva

HIGGS BOSON

cPARTICLLEZ 10




No Higgs in Catholic church ?

THE HIGGS BOSON WALKS INTO A CHURCH.
THE PRIEST SAYS WE DON'T ALLOW, HIGGS,BOSONS IN HERE. -
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Somebody is jealous...
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A Higgs event in CMS ?




Do not forget heavy ions physics

To conclude:

p-Pb run coming up Salgado
Proton-nucleus at the LHC

1 Tesla = 10% Gauss

: How strong?

10'7—10'® Gauss
VeB~ 1-10m.;

Noncentral heavy-ion coll.
at RHIC and LHC

Also strong Yang-Mills

fields VgB ~ 1- a few GeV

/2013 pPb run

ditions, nuclear PDFs
jce (best experimental option
» [[talk P Newman]

eld 10%Tesla=102Gauss:
¥In Florida) Typical neutron star
surface

Super critical magnetic
field may have existed in

very early Universe. FaSC| nati ng

Superconducting Maybe after EW phase Ph)’SiCS ’
magnets in LHC transition? (cf: vachaspati’91)



Not always plain sailing...

Luminosity logs from weeks 34 and 35 (20th to 29th August 2012)



LHC luminosity production

o Peak luminosity 7.7 1033 I/cm? s

e LHC operation has reached good routine to
Y deliver the promised |5 fb! by the end of 2012

LHC 2011 RUN (3.5 TeV/beam) LHC 2012 RUN (4 TeV/beam)
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What did we learn?

e LHC is magnetically very reproducible on a
month to month time scale

e High precision of the powering system
° (8 independent sectors !)

e High availability of the cryogenics and
hardware system

e Head on beam-beam limit higher than foreseen
* Aperture better than foreseen

* Not a single magnet quenched due to beam
° (>3 @] stored in the magnets)

e Careful increase of the number of bunches and
intensities OK (up to |50 MJ per beam)




Concerns of intensity and energy

* Single event upsets (SEU) that depend
on beam intensity and luminosity (Radiation
to Electronics)

* Localized short losses, commonly referred
to as UFOs (Unidentified Falling

Objects : dust ?)

* Beam induced heating of injection
kickers, collimators, beam screens, beam
instrumentation, RF fingers, ...

 Electron cloud and dynamic pressure rise at
very high bunch intensities
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The predictable future: LHC time-line

2009 Start of LHC

Run 1: 7 TeV centre of mass energy, luminosity
ramping up to few 1033 cm= s, few fb-! delivered

LHC shut-down to prepare machine for design
2013/14 energy and luminosity

Run 2: Ramp up luminosity to design (10%* cm s'), ~50 to 100 b’

2017 or 18 Injector and LHC Phase-l upgrades to go to ultimate luminosity

Run 3: Ramp up luminosity to 2.2 x design, reaching ~100 fb™! / year
accumulate few hundred fb™"

Phase-ll: High-luminosity LHC. New focussing magnets and
~2021/22 CRAB cavities for very high luminosity with luminosity levelling

Run 4: Collect data until > 3000 fb™"

By courtesy of R. Heuer
2030 End of the LHC Era ? a Big Party ! CERN DG




LS| scope and schedule

Repair defective interconnects

Consolidate all interconnects with new design
Finish off pressure release valves (DN200)
Exchange magnets with non-conformities
Repair He leaks (sectors 3-4 and 4-5)
Maintenance of all the systems after 3 years

operation
- : |0-15 % of interconnections to be
* Bring all necessary equipment up opened and to be re-welded

to the level needed for 7TeV/beam 00% (10°000) to be consolidated

Schedule is now consolidated, the countdown runs !




|3 kA splice consolidation

N 1 Consolidated dipole Consolidated electrical
magnets bus splice insulation

Final validation

teston a

laboratory
interconnect:

- 13 KA quench

- 20 kCycles

- Thermal cycles v




Radiation to Electronics (R2E)

e Operation in 201 | has
identified most critical

equipment

o Mitigation measures
integrated “on-the-fly” if

and when possible

e 20117201217

(and Technic

o Relocation
elements

> Additional :
critical arez

e Aim for ope
is to dodge |
(no limit to -
performance

Cummulative High-Energy Hadron Fluence / cm?/2011

1.0E+10

1.0E+09

1.0E+08

1.0E+07

1.0E+06 *

e LSI (2013-2014): relocate
& shield all critical areas

e Beyond LSI|: major action
required for power
converters and other
electronics in the tunnel

Evolution of Radiation Levels (P1)

—-UJ14
=-UJ16
FLUKA

Ultimate |

Weeks / 2011




LS2 (2018): Injector Upgrades

Connect Linac4 to PS Booster,
« New PS Booster injection channel

3 Upgrade PS Booster 1.4 & 2.0 GeV
* New Power Supplies, RF system etc.
 Upgrade transfer lines & instrumentation

ALICE

Upgrades the PS

* Injection region for 2.0 GeV Injection
 New/Upgraded RF systems
 Upgrades to Feedbacks/Instrumentation

Upgrades to the SPS

 Electron Cloud mitigation — strong feedback system, or coating of
the vacuum system

 Impedance reduction, improved feedbacks

* Large-scale modification to the main RF system




DS Upgrade: collimators & || T

o LS22017-2018: Point-3,7 & IR-2 e
e LS3 2021-2022:IR1,5 as part of HL-LHC 5

halo Q7 g agpy Q8 - el
- M8 R Q9 i 41007 — missing dipole
VB BIRT \ Qi
MBAZRT g g1ry
MB.BI IR/L ] —
[BAL=1192Tm @] = 11.85kA

in series with MB with 20 % margin
LS2: 12 coldmass + 2 spares = 14 CM
11 m Nb,Sn 3 m
J Collim LS3: 8 coldmass + 2 spares = |0 CM
5.5 m Nb;Sn 5.5 m Nb;Sn
LS2: 24 coldmass + 4 spares = 28 CM
3Im LS3: 16 coldmass + 4 spares = 20 CM
>-> M Nbson Collim. Total 48 CM




|| T DS models S

e Single aperture

demonstrator
N (MBHSP1) tested
%ﬁ at FNAL

e CERN model N
manufactu rlng ;r,.
started { o

/VQ

F I g

* Design of twin

apertu re in First |1 T copper coil
winding completed at
progress CERN

aperture




LHC luminosity expectations
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High
Luminosity
LHC

High-Luminosity LHC: Goal
e Implement a hardware configuration and a
set of beam parameters that will allow to
reach a peak luminosity of 5x103* cm-2s-!

with levelling, and integrated luminosity of
250-300 fb"! PEr year (10 times the present LHC)

== 10 33 nolevel -==Levelat510 34
L-;\ 8 F+34 \\ — 10 % - no levelling N‘f 8 E+34 - \ | \ | \
o =
o . # 1 8 \
i&)/ 6.E+34 \ - Levellingat 5 1C S 6B+ \ I \ | \
S . 2 haeeloa . W, [
£ "= s S W U NN
wn \\ o= - S \
9 4 E+34 \‘\\ § 4.E+34 Average N 10 level S ~o |
£ h ~ el — 2 E+34 - | ". . :.Average|level B |
3 2.E+34 ——S=s~=oo : ] : '
I | 1
0.E+00 ‘ ‘ ‘ | ‘ - O.E+00 | | | -
’ 0 5 10 15 20 25
0 2 4 6 8 10 12 time (hours)

time (hours)



High
Luminosity
LHC

v Octant 5%_ e

for RF it
cavities .

Low B (pp)
8 | HighLuminosity




Nb,Sn knocks at the door
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Nb3Sn has the potential to give a 50 %
benefit in gradient (for the same aperture),
or larger aperture (for the same gradient), at
much increased temperature margin (factor

2 to 3)
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By courtesy of A.Ballarino, CERN

SC links

HTS tapes Round wires Removal of the converters

from the cavern

Power converter hall

LI ™ ]

®=75mm ®=60 mm
Itot =190 KA @ 25 K (2 X 95 KkA) Itot =100 KA @ 25 K (2 X 50 kA)

A. Ballarino, paper 5LY-133 at ASC-2010 *«% E%\ AR i{

Connection to
LHC magnets

CENTER TUNNEL LHC

AT MNP A ARR e

Repositioning the converters in the cavern



Role of crab cavities

Without crab cavity With crab cavity

» RF crab cavities deflect head and tail in opposite
directions so that the collision is effectively head-
on and the luminosity is maximized

* The same principle can be used for luminosity
leveling using the crab cavities at variable angle
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Is there a physics beyond the LHC ?

UPCOHING BLOCKBIIST!R FII.MI

Will the LHC se@the Decepticons to revive
= Megatron

?@; enc ofJed de Landa
N t|me0

hat the Universe is a
be@\
(Yause everybody to
@ak-out and see a vision
of the future ?
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HE-LHC Scope

o “[...]a 33 TeV centre-of-mass energy technicolor
proton—proton accelerator in the LHC g
tunnel [...] and the need for new -

< injectors, possibly with 1 TeV

energy 7, (The High-Energy Large Hadron Collider,
CERN-2011-003, also EUCARD—-Conf-2011-001)

* Technicolor, Supersymmetry, Extra
dimensions: “[...] the need to explore
the high energy frontier will remain.
We will always be able to make that

case, today and tomorrow” . (Elements of a

Physics Case for a High-Energy LHC, J.D.Wells, pp. I-5,
CERN-2011-003,2011)

e “A project on the scale and
innovation level of the HE-LHC has a

long preparation lead time” . (CERN
Accelerator Strategy, S. Myers, pp. 6, CERN-2011-003,201 1)







HE-LHC magnet challenges

27 km of very high field, accelerator grade magnets
> 40 mm bore, 20 T dipoles

> 40 mm bore, 500 T/m arc quadrupoles
> 50 mm bore, 400 T/m IR quadrupoles

/ km of pulsed accelerator magnets with low loss
> 100 mm bore, 5T dipoles

5.6 km of transfer lines, from a SPS+ to HE-LHC
Field swing and field quality

Mechanics, protection, powering and stray field in the
constrained LHC tunnel space

Increased heat loads (e.g. a factor 20 on qg,chrotron)
Cost and material availability

Dismantle the LHC to make space for the new
ring



Technical superconductors
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A really high field dipole

e Engineering extrapolation
is difficult, but does not
seem impossible

* May require a genetic
mutation in the art of SC
magnet design an

construction
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The big leap: a new tunnel !

John Osborne (CERN), Caroline Waaijer (CERN)
The optimal dipole: field could be

lower (e.g. |6 T) than projected fora
HE-LHC in.the LHC tunnel (20 T):

Higher collision energy possible !

y Lake Geneva

2y

- o?
& B

> 4

Whichever the optimal solution,
a vigorous high field magnet R&D should start today




Timeline

1980

W34 Construct.  Physics | Upgr

Nz[o@M Design, R&D = Proto Construct. Physics

1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

HL-LHC Design, R&D Construct. Physics

S-S5 [el Design, R&D & Proto = Construct.  Physics

¢ It seems awfully early to talk about the
next machine, and yet we are already late
if we wish to have continuity !
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Drawing the line, today

* The production of physics material at the
LHC proceeds very well, and the physics
case for a HL-LHC is strong

e The ensuing demands for technology R&D
are many, intellectually interesting, technically
challenging, and urgent

° Just on magnets (my toy) we are looking at new

materials (Nb;Sn, HTS), need a technology proof
by 2015, production by 2020

> This will open a new portfolio of applications
(laboratory, energy, medical)
 HEP, and the LHC as its latest creation, is an
ideal herald of innovation and advancement
whose stewardship has an unbeatable record



Have no fear in the future of HEP...

0D ... and thank you for your attention !



