A search for nEDM and new constraints on short-range "pseudo-magnetic" interaction using neutron optics of noncentrosymmetric crystals

V.V. Fedorov a,b V.V. Voronin $\underset{-}{\text { a, , I.A. Kuznetsov }}$ a,

a) Petersburg Nuclear Physics Institute of NRC "Kurchatov Institute" Gatchina, St.Petersburg, 188300, Russia
b) St. Petersburg State Polytechnic University, St.Petersburg, Russia

Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" in Gatchina

Emperor Paul castle

Apostle Paul Cathedral

Gatchina,

- Russia, located 45 km to the south of $S t$. Petersburg, former residence of Russian

fire-lookout tower

Prior Palace
(Order of the Knights of Malta)

Church of the Intercession of the Holy Virgin

Reactor facilities of Petersburg Nuclear Physics Institute

Acting (from 1959) WWR-M 18 MW reactor

The 100 MW reactor PIK (under construction)

Now reactor PIK has achieved important step in its construction:
The fuel elements were first loaded on February 28 last year. The reactor core was partly filled with the fuel assemblies.
Critical condition was achieved. First neutrons were obtained. This fact provides inspiration for all future neutron beam users.

Power increasing till designed 100 MW can be done step by step only when all the reactor buildings for auxiliary and alarm systems will be finalized in construction.

Nowaday view of reactor PIK complex

K.A. Konoplev. First fuel element to be loaded into ractor core

A few words about Neutron EDM

Existence of the Electric Dipole Moment of a particle violates P invariance as well T and so CP invariance

The last result $d_{n} \leq 3 \cdot 10^{-26} \mathrm{e} \cdot \mathrm{cm}$ (ILL, RAL, Sussex Un.) PRL, 2006, 97, 131801) - is not much better 23 years old results of PNPI and ILL $\mathrm{d}_{\mathrm{n}} \leq 9,7 \cdot 10^{-26} \mathrm{e} \cdot \mathrm{cm}$, PNPI, 1989

If you imagine a neutron as a sphere of radius $R \sim 10^{-13} \mathrm{~cm}$, than $\mathrm{d} / \mathrm{R} \sim 3 \cdot 10^{-13}$.

Such a part of Earth radius is approximately ~ $2 \mu \mathrm{~m}$

History of nEDM experiment from Ramsey pioneering work (published in 1957)

Standard model

Sensitivity to neutron EDM

$$
\sigma^{-1} \sim E \tau \sqrt{N}
$$

Advantages of diffraction method of the nEDM search

* Strong electric field (up to10 ${ }^{9} \mathbf{~ V / c m}$), acts on neutron moving close to diffraction condition in a crystal without center of symmetry. It leads to spin rotation effects.
(In lab only field $\sim 1 \mathbf{1 0}^{4} \mathrm{~V} / \mathrm{cm}$ is available)
* Direction of this field is perpendicular to crystallographic plane
* Feasibility of controlled changing the sign and the value of the electric field acting on neutron in crystal.
* A few ways to eliminate the false Schwinger effect
* The feasibility to use the assembling of a few different crystals to increase the interaction time

Comparison of Sensitivities

$$
\sigma^{-1} \sim E \tau \sqrt{N}
$$

UCN method

$\mathrm{E} \sim 10 \mathrm{kV} / \mathrm{cm}$
$T_{\text {max }} \sim 1000 \mathrm{~s} \boxed{\text { neutron lifetime) }}$ Ет $\sim 10^{4}(\mathrm{kV} \cdot \mathrm{s}) / \mathrm{cm}$
(Current value
$$
\left.\mathrm{ET} \approx 10^{3}(\mathrm{kV} \cdot \mathrm{~s}) / \mathrm{cm}\right)
$$

Parameters of some NCS crystals

Crystal	Symmetry group	hkl	d, (Å)	$\begin{gathered} E_{g}, \\ 10^{8} \mathrm{~V} / \mathrm{cm} \end{gathered}$	$\begin{aligned} & \tau_{\mathrm{a}}, \\ & \mathrm{~ms} \end{aligned}$	$\begin{gathered} E_{g} \tau_{a}, \\ (\mathrm{kV} \cdot \mathrm{~s} / \mathrm{cm}) \end{gathered}$
$\begin{aligned} & \alpha \text {-quartz } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$	32(D_{3}^{6})	111	2.236	2.3	1	230
		110	2.457	2.0		200
$\mathrm{Bi}_{12} \mathrm{SiO}_{20}$	123	433	1.75	4.3	4	1720
		312	2.72	2.2		880
$\mathrm{Bi}_{4} \mathrm{Si}_{3} \mathrm{O}_{12}$	-43m	242	2.10	4.6	2	920
		132	2.75	3.2		640
PbO	P ca 21	002	2.94	10.4	1	1040
		004	1.47	10		1000
BeO	6 mm	011	2.06	5.4	7	3700
		201	1.13	6.5		4500

!!! We should looking for new NCS crystal !!!

Essence of experiment

The neutrons with $\lambda_{B}=2 d_{0} \sin \theta_{B}$ reflect from crystal.

$$
\text { For } \theta_{B} \approx \pi / 2 \rightarrow \lambda_{B} \approx 2 d_{0}\left[1-\left(\pi / 2-\theta_{B}\right)^{2}\right]
$$

Notice, that only the neutrons with $\lambda>\lambda_{B}$ and $\lambda<\lambda_{B}$ can pass through crystal and they will move in electric field -E and +E correspondingly.
We can select this passed neutrons by the second crystal reflector (analyzer) with controlled interplanar spacing

Changing d of analyzer (by heating or cooling) one can control electric field acting on neutron

Essence of the phenomena

In the non-centrosymmetric crystal $\quad V^{\mathrm{E}}(\overrightarrow{\mathrm{r}})=2 V_{\mathrm{g}}^{\mathrm{E}} \cos \left(\overrightarrow{\mathrm{g}} \overrightarrow{\mathrm{r}}+\Delta \phi_{\mathrm{g}}\right)$ the positions of the "nuclear planes" are shifted from that of «charge ones», and also from «mass planes»

Neutrons are concentrated on the "nuclear planes" or between them (on the maxima or on the minima of the nuclear potential).

In the non-centrosymmetric crystal neutrons turn out to be under a strong electric field (and also «pseudomagnetic» field)

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{r})=-\operatorname{grad} V^{E}(\boldsymbol{r})=2 V_{g}^{E} \boldsymbol{g} \sin \left(\boldsymbol{g r}+\Delta \phi_{g}\right) \\
& \boldsymbol{E}_{g}=\left\langle\psi^{(1)}\right| \boldsymbol{E}(\boldsymbol{r})\left|\psi^{(1)}\right\rangle=-\left\langle\psi^{(2)}\right| \boldsymbol{E}(\boldsymbol{r})\left|\psi^{(2)}\right\rangle=\boldsymbol{g} V_{g} \sin \Delta \phi_{g}
\end{aligned}
$$

Essence of the phenomena

Harmonic amplitudes V_{g} are determined by structure amplitudes F_{g} (sell scattering amplitude):

$$
\begin{aligned}
& V_{g}=-\frac{2 \pi \mathrm{~h}^{2}}{m} N_{c} F_{g}, \\
& F_{g}=\sum_{i} e^{-W_{i g}} f_{i}(\mathbf{g}) e^{-i \mathrm{gri}_{i}} .
\end{aligned}
$$

$$
f_{i}^{N}(\mathbf{g})=-a_{i} ; \quad f_{i}^{E}(\mathbf{g})=-2 r_{n} \frac{Z_{i}-f_{i c}(\mathbf{g})}{\mathrm{D}_{c n}^{2} g^{2}}
$$

Nuclear amplitudes determine nuclear potential

Electric amplitude determine electric potential (charge distribution)

Essence of the phenomena

We can write the electric potential in the same way

$$
\begin{aligned}
& V^{E}(\boldsymbol{r})=2 V_{g}^{E} \cos (\boldsymbol{g} \boldsymbol{r})= \\
= & \left.V_{g}^{E} \exp (i \boldsymbol{q} \boldsymbol{r})+V_{g}^{E} \exp (-i \boldsymbol{g})\right)
\end{aligned}
$$

The

electromagnetic neutron interaction contains electric field (not a potential)

So electromagnetic scattering amplitude is imaginary

$$
V^{E M}(\boldsymbol{r})=D(\boldsymbol{\sigma} \mathbf{E})+\mu \frac{(\boldsymbol{\sigma}[\mathbf{E} \times \mathbf{v}])}{c}
$$

Neutron scattering amplitude for short range Yukawa-type potential of fermion-fermion interaction due to exchange of peudoscalar light particle (J.E.Moody and Frank Wilczek, Phys.Rev.D 30 (1984) 130 is also imaginary as the electric one

It seems as interaction of spin with some pseudo magnetic field that is gradient of pseudo magnetic potential
g-harmonics of neutron interaction with the crystal will be

$$
\hat{V}_{g}^{S P}=-i F_{g}^{S P} e^{i \Phi_{g}^{S P}} \frac{\mathrm{~h}^{2} g_{s} g_{p}}{2 m V_{c}} \frac{g \lambda^{2}}{1+g^{2} \lambda^{2}}\left(\boldsymbol{\sigma} \mathbf{n}_{g}\right)
$$

$f_{g}^{S P} \equiv F_{g}^{S P} e^{i \Phi_{g}^{S P}}=\sum A_{i} \cdot e^{i g r_{i}}$
is a structure factor determined by mass distribution
A_{i} is a mass number of i nucleus

Neutron optics in the crystal without center of symmetry

One can write the neutron wave function in crystal, using the perturbation theory for directions and energies far from the Bragg ones, in the following form

$$
\begin{aligned}
& \boldsymbol{\psi}=e^{i \mathbf{K r}}+\sum_{g} \frac{V_{g}}{E_{K}-E_{K+g}} \cdot e^{i(\mathbf{K}+\mathbf{g}) \mathbf{r}}= \\
& =e^{i \mathbf{K} \mathbf{r}}\left(1-\sum_{g} \frac{V_{g}}{\Delta_{g}^{\varepsilon}} \cdot e^{i \mathbf{g r}}\right)=e^{i \mathbf{K r}}\left(1-\sum_{g} \frac{1}{w_{g}} \cdot e^{i \mathbf{g r}}\right) \\
& \begin{array}{l}
E_{K}=\hbar^{2} K^{2} / 2 m, \\
E_{K+g}=\hbar^{2}|K+g|^{2} / 2 m
\end{array} \\
& \frac{V_{g}}{w_{g}}=\frac{V_{g}}{\Delta_{g}^{\varepsilon}}=\frac{\gamma_{B}}{\Delta \theta}=\frac{\Delta \lambda_{B}}{\Delta \lambda} \quad
\end{aligned}
$$

Depending on the sign of the deviation parameter from the Bragg condition $\mathbf{2 \Delta _ { \mathrm { g } }}=|\mathrm{K}+\mathrm{g}|^{2}-\mathrm{K}^{2}$, the neutrons concentrate on the nuclear planes or between them (on the maxima of nuclear potential ($\Delta_{\mathrm{g}}<0$, red colour), or on its minima ($\Delta_{\mathrm{g}}>0$, blue colour) $V^{N}(\boldsymbol{r})=\sum_{g} V_{g} e^{i g r}=\sum_{g} 2\left|V_{g}\right| \cos (\boldsymbol{g r})$.
$|\psi|^{2}=1-\sum_{g} \frac{2 v_{g}^{N}}{\Delta_{g}^{\varepsilon}} \cos \mathbf{g r}$
For noncentrosymmetric crystal "electric planes" are shifted relatively to the "nuclear" ones

$$
V^{E}(\mathbf{r})=\sum_{g} V_{g}^{E} e^{i \mathbf{g r}}=\sum_{g} 2\left|V_{\mathbf{g}}\right| \cos \left(\mathbf{g r}+\Delta \phi_{g}\right)
$$

$$
\mathbf{E}_{\text {sum }}=\sum_{g} \frac{2 v_{g}^{N}}{\Delta_{g}^{\varepsilon}} v_{g}^{E} \mathbf{g} \sin \left(\Delta \phi_{g}\right)_{\mathrm{g} 2012, \text { Alghero, Spt.23-28 }}^{|\boldsymbol{K}+\boldsymbol{g}|>\boldsymbol{K}}
$$

$$
\left|K_{B}+\boldsymbol{g}\right|=\boldsymbol{K}_{B}
$$

A spin rotation angle due to Shwinger interaction is

$\Delta \varphi_{S}=\frac{2}{\mathrm{~h} c v} \mu \boldsymbol{\sigma} \cdot\left[\mathbf{E}_{\text {sum }} \times \mathbf{v}\right] \quad \mathbf{E}_{\text {sum }}=\sum_{g} \frac{2 v_{g}^{N}}{\Delta_{g}^{\varepsilon}} v_{g}^{E} \mathbf{g} \sin \Delta \phi_{g}$
In the considered case only one system of crystallographic planes \mathbf{g} is essential

$$
\mathbf{E}_{g}^{(1,2)}= \pm \frac{1}{\sqrt{1+w_{g}^{2}}} v_{g}^{E} \mathbf{g} \sin \Delta \phi_{g}= \pm \frac{E_{g}}{\sqrt{1+w_{g}^{2}}}
$$

"Pseudomagnetic" field also is determined by the shift of "pseudomagnetic" planes relative to nuclear ones

$$
\begin{gathered}
\left.\hat{V}_{S P}=\langle\psi(\mathbf{r})| V_{S P}(\mathbf{r})\left|\psi(\mathbf{r})>=\frac{U_{g}^{N}}{\Delta_{g}}\right| \hat{V}_{g}^{S P} \right\rvert\, \sin \Phi_{g}^{S P}= \\
=\frac{U_{g}^{N}}{\Delta_{g}} F_{g}^{S P} \frac{\mathrm{~h}^{2} g_{s} g_{p}}{2 m V_{c}} \frac{g \lambda^{2}}{1+g^{2} \lambda^{2}}\left(\sigma \mathbf{n}_{g}\right) \sin \Phi_{g}^{S P} \equiv V_{S P}\left(\sigma \mathbf{n}_{g}\right) . \\
\begin{array}{c}
\text { deviation } \\
\text { from } \\
\text { Bragg } \\
\text { condition }
\end{array} \\
\begin{array}{c}
\text { Angle of neutron } \\
\text { spin rotation }
\end{array} \varphi_{S P}=\frac{2 V_{S P}}{\mathrm{~h}} \boldsymbol{\tau} \underbrace{}_{\begin{array}{c}
\text { Time of neutron } \\
\text { passage } \\
\text { through the } \\
\text { crystal }
\end{array}}
\end{gathered}
$$

For crystal with a center of symmetry $\varphi_{S P} \equiv 0$ because $\Phi_{g}^{S P} \equiv 0$

Neutron passage through the crystal, Bragg angle close to the right one

Neutron energy of exact Bragg condition

$E_{g}=\mathrm{h}^{2} g^{2} / 8 m$

$$
\mathrm{E}_{\mathrm{n}}<\mathrm{E}_{\mathrm{g}}
$$

- the maximum of $|\psi(\mathrm{r})|^{2}$

Test experiments (WWR-M, HFR)

Dependence of interplanar electric field, acting on neutron, on the temperature difference of two crystals (quartz (110) plane, $L_{c}=14 \mathrm{~cm}$, Bragg angle $\approx 86^{\circ}$

From the test experiment it follows that the sensitivity to measure the EDM is
$\sim 2 \cdot 10^{-25} \mathrm{e} \cdot \mathrm{cm} /$ day (3 times better than in ILL UCN experment)

Simultaneously we can search for short range Yukawa-type fermion-fermion "pseudomagnetic" interaction due to exchange of pseudo scalar light (axionlike) particle

Constraints on the $\left(g_{s} g_{p} ; \lambda\right)$ from the test experiment

(1) this work
(2) is possible improvement of this method,
(3) is gravitational level experiment [1]
(4) is the UCN depolarization [2]
(5) is proposal [3],
(6) and (7) are the predictions of axion model with $\theta \sim 1$ and $\theta \sim 10^{-10}$ correspondingly [2]
[1] S.Baessler, V.V.Nesvizhevsky, K.V.Protasov, A.Yu.Voronin, Phys.Rev.D 75 (2007) 075006.
[2] A.P. Serebrov, ArXiv:0902.1056v1 [nucl-ex] 6 Feb 2009.
[3] O. Zimmer,ArXiv:0810.3215y1 [nucl-ex] 17, Oct 2008
28 October 2012 Channeling 2012, Atghero, Spt.23-28

Scheme of the experiment

Main elements CRYOPAD and position sensitive detector

Current accuracy
of spin
orientation is
$\sim 10^{-2} \mathrm{rad}$ for
routine experiment
$\sim 10^{-3} \mathrm{rad}$ can be

reached for special
cases

[^0]
3-D spin analysis allows to select different contributions

$$
g_{n}=1.8 \cdot 10^{4}[1 / G \mathrm{~s} / \mathrm{s}]
$$

EDM

Residual magnetic field

Photo of quartz crystals

Tests of the series of crystals from Aleksandrov factory

Full assembled crystal dimention Crystal number $105 \times 100 \times 500 \mathrm{~mm}^{3}$ (15un. $35 \times 100 \times 100$)

Experimental test

Two crystal line ($\Delta \mathrm{T}$)

Two crystal line (angular)

For Bragg angle $\sim 45^{\circ}$ the Bragg width $\sim 0.0005^{\circ}$

We can increase the EDM effect by using assembly of the crystals.

Spatial distribution of Schwinger effect in position sensitive detector

nEDM effect spatial distribution

Schwinger $\Delta P_{s}<1.110^{-4}$ stat. accuracy is
$\Delta \mathrm{P} \sim 1.5$ 10-4

nEDM measurement

Was limited by low luminosity and size of crystal

Summary of the experimental scheme

- Possibility to reverse of the electric field.
- "Zero" Schwinger effect.
- Possibility to control and suppress the systematic.
- Low influence of crystal quality. (For $\omega_{m} \gg \Delta \theta$ the effects $\sim \Delta \theta / \omega_{m}$. Intensity $\left.\sim \omega_{m}\right) . ~ \longrightarrow \quad$ New kinds of NSC crystals
- One can increase the effect by using a series of crystals
For quartz crystal,
for thickness $\quad L_{c}=50 \mathrm{~cm}$

$$
\Rightarrow \sigma_{d} \sim 1.3 \cdot 10^{-26} e \cdot \mathrm{~cm}
$$

statistics
100 day

Summary of the systematic

Historical review

- 1963 Shull S.G. Neutron spin-neutron orbit interaction with slow neutrons.

Phys. Rev. Lett., 10 (1963).

- 1966 Abov Yu.G., Gulko A.D., Krupchitsky,P.A. Polarized Slow Neutrons; Atomizdat; Moscow, 1966
Interference of the nuclear and spin-orbit amplitudes in a non-centrosymmetric crystal.
- 1967 Shull,C.G.; Nathans,R. Phys. Rev. Lett. 196719384.

Bragg reflection by CdS absorbing centrosymmetrical crystal for nEDM search: $d_{n}<710^{-22} \mathrm{e} \mathrm{cm}$

- 1972 Golub R., Pendlebury G.M., Contemp. Phys. (1972) 13519.

The idea to use the atomic electric fields in crystal for the neutron EDM search. But how?

- 1983 Forte M. J., Phys. G (1983) 9745.

Idea to search for neutron EDM by measuring a spin rotation angle for the Bragg diffraction scheme.

- 1985 V.G.Baryshevskii and S.V.Cherepitsa, Phys.Stat.Sol., b128 (1985) 379. Izvestiya Vuzov SSSR, ser. fiz. 8 (1985) 110. More detailed theory.
- 1988 V.V. Fedorov, O.I. Sumbaev, et al. First prediction of electric field in quartz single crystal. Sov. Phys. JETP 67, 1727 (1988)
- 1989 Fedorov V.V., et al. Nucl. Instr. and Meth. A (1989) A284 181.

First measurements of electric field of NCS crystal. Eg $\approx 210^{8} \mathrm{~V} / \mathrm{cm}$ for quartz crystal.

- 1989 Forte M., Zeyen C.M.E. Nucl. Instr. and Meth. A (1989) A284 147.

Experiment on the neutron spin-orbit rotation in the Bragg scheme of the diffraction.

- 1992 Fedorov V.V., Voronin V.V., Lapin E.G. J. Phys. G (1992) 181133.

Laue diffraction for the neutron EDM search. Spin dependence of pendulum phase.

- 1997 Fedorov V.V., Voronin V.V., Lapin E.G., Sumbaev O.I. Tech.Phys. Lett. (1995) 21 (11) 881; Physica B (1997) 234--236 8.

Depolarization in Laue diffraction scheme and sensitivity to neutron EDM search.

- 1999-2012 Fedorov V.V. et al.

Series of the test experiments on observation of spin effects in neutron optics and diffraction

Last publications

- V.V. Fedorov, V.V. Voronin. Neutron diffraction and optics in noncentrosymmetric crystals. New feasibility of a search for neutron EDM. NIM B, 201 (1) (2003) 230-242.
- V.V. Fedorov, E.G. Lapin, E. Lelievre-Berna, V.V. Nesvizhevsky, A.K. Petoukhov, S.Yu.

Semenikhin, T. Soldner, F. Tasset and V. V. Voronin, The Laue diffraction method to search for a neutron EDM. Experimental test of the sensitivity.
NIM B, 227 (1-2) (2005) 11-15.

- V.V. Fedorov, I.A. Kuznetsov, E.G. Lapin, S.Yu. Semenikhin, V.V. Voronin, Neutron spin optics in a noncentrosymmetric crystals as a way for nEDM search. New experimental results, Physica B (385-386) (2006) 1216-1218.
- V.V. Voronin, V.V. Fedorov, I.A. Kuznetsov. Neutron diffraction constraint on spin-dependent short range interaction. Pis'ma ZhETF, 90 (1) (2009) 7-9
- V.V. Fedorov, M. Jentschel, I.A. Kuznetsov, E.G. Lapin, E. Leli`evre-Berna, V. Nesvizhevsky, A. Petoukhov, S.Yu. Semenikhin, T. Soldner, F. Tasset, V.V. Voronin, Yu.P. Braginetz.
Measurement of the neutron electric dipole moment by crystal diffraction. Nuclear Inst. and Methods in Physics Research, A 611 (2009) 124-128.
- V.V. Fedorov, M. Jentschel, I.A. Kuznetsov, E.G. Lapin, E. Lelièvre-Berna, V. Nesvizhevsky, A. Petoukhov, S.Yu. Semenikhin, T. Soldner, V.V. Voronin, Yu.P. Braginetz. Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal. Physics Letters, B 694 (2010) 22-25.
- V.V. Fedorov, V.V. Voronin, Yu.P. Braginetz. Search for the neutron EDM by crystal-diffraction method. Test experiment and future progress. Physica B, 406 (2011) 2370-2372.
- I. Antoniadis, S. Baessler, M. Buchner, V.V. Fedorov, S. Hoedl, A. Lambrecht, V.V.Nesvizhevsky, G. Pignol, K.V. Protasov, S. Reynaud, Yu. Sobolev. Short-range fundamental forces. Comptes Rendus Physique, 12 (2011) 755-778.

Thank you for attention

[^0]: F. Tasset, P.J. Brown, E. Lelie` vre-Berna, T. Roberts, S. Pujol, J. Allibon, E. Bourgeat-Lami, Physica B, 267-268 (1999) 69-74
 28 October 2012 Channeling 2012, Alghero, Spt.23-28

