Channeling 2012

Deflection of MeV protons by an unbent half-wavelength silicon crystal

V. Guidi, A. Mazzolari, D. De Salvador and L. Bacci

Alghero, October 25, 2010

Outlook

* Particles trajectories
\& SIMOX structures
\& Fabrication of large area silicon nano-membranes
* The experimental setup

Experimental results

particles trajectories

- 2 MeV protons planar channeled between (110) Si planes
- Particles oscillates between atomic planes, λ $\cong 210 \mathrm{~nm}$
- Zero tilt between beam and crystal
- Tilt equal to half the planar critical angle
- Expected deflection of channeled and overbarrier particle beam by an unbent crystal
- Idea from E. Tsyganov , A. Taratin, NIMA 363, (1995) 511-519

Channeled particles trajectories

SIMOX structure I

Substrate heated at
$650^{\circ} \mathrm{C}$ and oxygen ions implantation

Thermal anneling at $1320^{\circ} \mathrm{C}$ in $\mathrm{O}_{2} / \mathrm{Ar}$ atmosphere

Thermal annealing

SIMOX structure II

* Thermal annealing restores silicon cristalline quality and creates a buried SiO_{2} layer.
* Interfaces between Si and SiO_{2} are well terminated.

Fabrlication of large area silicon nano thickness membranes

- SIMOX starting structure 100 nm device layer 400 nm box layer $675 \mu \mathrm{~m}$ bulk layer
- LPCVD coating with silicon nitride

Fabrfeation of large area silicon nano thickness membranes

- Silicon nitride patterning with standard photolitographic techniques
- Silicon anisotropic etch does not etch silicon nitride nor the SiO_{2} layer

Fablication of large area silicon nano thickness membranes

- Removal of the silicon nitride and silicon oxide layers
- Final membrane

The experimental setup

- D1-D2 pion-diode detectors
- Au gold target to probe the deflected beam
- Angular resolution 0.0042°
- Critical angle for planar channeling ~0.3
- Setup installed at INFN-LNL

Experimental results

Experimental results

- Tilt angle 0.15° (half of the critical angle)
- Deflection of channeled particles equal to two times the incidence angle (mirror effect)

Deflection of overbarrier particles

Experimental results

- <Mirroring» of channeled particle particles clearly observed (red points)
- Deflection of overbarrier particles (blue points)

Conclusions

- We demonstrated that also flat crystals can deflect particles opening the route for a simpler steering strategy
- Deflection by crystals can be realized also at low energies (never demonstrated before), in this regime there is interest for analytical and medical applications.
- Possible applications for high energy beam steering and for studies of radiation emission in ultra-thin crystals.

Thank you

Thank you for you attention

(3)

(3)

Recent papers

Submission date
Acceptance date
Publishing date

V. Guidi et al.

PRL 108, 014801 (2012)
27 August 2011
26 October 2011
3 January 2012
Z. Y. Dang et al, APL 99, 223105 (2011)

V. Guidi et al.	Z. Y. Dang et al,
PRL 108, 014801 (2012)	APL 99, 223105 (2011)
27 August 2011	3 November 2011
26 October 2011	14 November 2011
3 January 2012	1 December 2011

Recent papers

Ma Fwd: Acceptance LH13520
$\leftarrow \rightarrow$ C 昌 https://mail.google.com/mail/u/0/\#search/from\%3Aguidi\%40fe.infn.it/139e46cbca027bca

SCRIVI
Posta in arrivo
Speciali
Importanti
Posta inviata
Bozze (7)
[lmap]/Sent
[Imap]/sent-mail
Autocollimatore
cappa CR3
Chiller CR3
Deleted Messages
In blocco
INBOX/articoli miei

Cerca persone

- Said Hasan

A~Enrico Bagli
\checkmark Ciro Chiappini

- Damiano Ansal
- Daniela Liett
giovanni navone
- Laura Bandiera
- Mukhtar Rana
- Nicola Argiolas

Vacuum-chuck AFM stages - www.nPoint.com/afm - AFM XY/Z stages with integrated vacuum chuck.
Perché questo annuncio?

Fwd: Acceptance LH13529 Guidi Posta in arrivo x
\therefore Vincenzo Guidi φ
a me
Begin forwarded message:

From: pri@aps.ord
 Date: 26 ottobre 2011 16:06.52 GMT+02:00

To: quidi@fe. infn.it
tance LH13529 Guidi
Reply-To: pri@aps.org
Re: LH13529
Deflection of MeV protons by an unbent half-wavelength silicon crystal by V. Guidi, A. Mazzolari, D. De Salvador, et al.

Dear Dr. Guidi,
We are pleased to inform you that your manuscript has been accepted for publication as a Letter in Physical Review Letters

Your manuscript will now be prepared for the production process. If any issues arise we will contact you, otherwise your manuscript will e forwarded directly to our production department. Please do not send a revised manuscript or figures at this time unless requested.

Yours sincerely,

Jerome Malenfant
Senior Assistant Editor
Physical Review Letters

- Vincenzo Guidi

Aggiungi alle cerchie $+\square$ -

Mostra dettagli

Annunci - Perché questi annunci?
Postdoc on 2D materials Open position at EPFL, Switzerland Apply now!
lanes.epfl.ch/postdoc
Aircraft Tools - In Stock Free Shipping all 50 states and apo Aircraft tools,drills, clecos, more. www.browntool.com

15W SingleFrequency laser Koheras BoostiK narrow linewidth laser - high power and low noise www nktphotonics com

Have You Written a Book? Learn how to publish your book in 30 days. Get our Free Author Guid 30 day . Book

Ex Libretto Sanitario Corsi Libretto Ex Sanitario (Haccp) Attestati validi in tutta Italia

Recent papers

Recent papers

2. Fabrication of large-area ultra-thin single crystal silicon membranes.pdf - Adobe Reader
File Modifica Vista Finestra ?

Fabrication of large-area ultra-thin single crystal silicon membranes

Z. Y. Dang, ${ }^{1}$ M. Motapothula, ${ }^{1}$ Y. S. Ow, ${ }^{1}$ T. Venkatesan, ${ }^{2}$ M. B. H. Breese, ${ }^{1,3, a)}$ M. A. Rana, ${ }^{4}$ and A. Osman ${ }^{5}$
${ }^{1}$ Center for Ion Beam Applications, Physics Department, National University of Singapore,
Lower Kent Ridge Road, Singapore 117542, Singapore
${ }^{2}$ NanoCore, National University of Singapore, Singapore 117576, Singapore
${ }^{3}$ Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link,
Singapore 117603, Singapore
${ }^{4}$ Physics Division, Directorate of Science, PINSTECH, P.O. Nilore, Islamabad, Pakistan
${ }^{5}$ National Centre for Physics (NCP), Shahdara Valley Road, Islamabad, Pakistan
(Received 3 November 2011; accepted 14 November 2011; published online 1 December 2011)
Perfectly, crystalline, 55 nm thick silicon membranes have been fabricated over several square millimeters and used to observe transmission ion channeling patterns showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [011] axis. The reduced multiple scattering through such thin layers allows fine angular structure produced by the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal to be resolved. The membrane crystallinity and flatness were measured by using proton channeling measurements and the surface roughness of 0.4 nm using atomic force microscopy. © 2011 American Institute of Physics. [doi:10.1063/1.3665620]

Large-area, ultra-thin, free-standing silicon membranes are needed for diverse applications in ultraviolet, x-ray spectrometry, nano-electro-mechanical systems, sensors, and

More recently, axial channelling in thin membranes was studied to characterise the effects of "rainbow" channelling ${ }^{18,19}$ which predicts a singular differential transmission

