Channeling-2012

High-energy wave packets in processes of bremsstrahlung, coherent and transition radiation

N. F. Shul'ga, S.V. Trofymenko Akhiezer Institute for Theoretical Physics of NSC KIPT Kharkov, Ukraine e-mail: shulga@kipt.kharkov.ua

- Spreading of high energy wave packets
- Coherent and transition radiation
- Ionization energy losses by half-bare electron
- LPM-effect and TSF-effect

HIGH-ENERGY WAVE PACKETS IN WKB APPROXIMATION

$$\left[\left(p_{\mu}-eA_{\mu}\right)^{2}-m^{2}\right]\phi=0$$

$$\phi^{WKB}(\vec{r},t) = \left[\frac{1}{\varepsilon - eA_0} \int d^3 r_0 \delta(\vec{r} - \vec{r}(t,\vec{r}_0,\vec{p}))\right]^{1/2} e^{\frac{i}{\hbar}S(\vec{r},\vec{p},t)} = \sqrt{\left|\frac{\partial^2 S}{\partial \vec{r} \partial \vec{p}}\right|} e^{\frac{i}{\hbar}S} \\ \left|\frac{\partial^2 S}{\partial \vec{r} \partial \vec{p}}\right| - \text{Van Vleck determinant}$$

W.H. Miller. Adv. Cham. Phys. <u>25</u> (1974) 69.

A.I. Akhiezer, N.F. Shul'ga. *High-Energy Electrodynamics in Matter.* Gordon and Breach Pub., Amsterdam, 1996.

SPREADING OF RELATIVISTIC WAVE PACKETS

- 1. Strong stabilizing effect
- 2. Dispersion mostly in transverse direction

R. Feynman: What are high-energy particle physicists doing (in CERN)?

Let us consider the collision of two watches:

SPREADING OF HIGH-ENERGY ELECTROMAGNETIC PACKETS

N.F. Shul'ga, S.V. Trofymenko, *in the book "Electromagnetic Waves"*, InTech, 2012

$$\phi(\mathbf{r},t) = e^{i(kr - \omega t)} A(t) \exp\left\{i\alpha(\mathbf{r},t) - \frac{(z-t)^2}{2\Delta_{\parallel}^2} - \frac{\rho^2}{2\Delta_{\perp}^2}\right\}$$
$$\Delta_{\parallel}^2(t) = a_{\parallel}^2 \qquad \Delta_{\perp}^2(t) = a_{\perp}^2 + \left(t/a_{\perp}\omega\right)^2$$

$$A(t)\exp\{i\alpha(\vec{r},t)\} \to \frac{1}{r}e^{i\omega r} \qquad \text{for } t \approx z \to \infty$$

- 1. The equivalent photon method
- 2. Bremsstrahlung, coherent and transition radiation etc.
- 3. Ionization energy losses

ULTRATRAHIGH FORMATION (COHERENT) LENGTHS

EFFECTIVE CONSTANT OF INTERACTION FOR LARGE COHERENCE LENGTH

The excitation is small

Problems

- •Methods of description of radiation at $\alpha_{eff} > 1$ (eikonal, semiclassical, operator semiclassical, classical electrodynamics, ...)
- Evolution in space and time
- Medium influence on radiation
- S-matrix and boundary conditions

COHERENT RADIATION IN CRYSTAL

Ter-Mikaelian 1953

Coherent effect

Coherence + Interference

$$\theta_c^2 << \theta^2$$
 $N_c Z e^2 / \hbar c < 1$, where $N_c = \frac{l_c}{a}$

10

Coherent Bremsstrahlung Theory

(Ferretti 1950, Ter-Mikaelian 1952, Überall 1956, 1960)

Akhiezer, Shul'ga 1982

The main Akhiezer's idea (1969)

• For coherent bremsstrahlung

 $d\sigma_{coh} \rightarrow d\sigma_{BH}$

• The idea: relative contribution of higher Born approximation can also be large!!!

Second Born approximation in CB theory A.Akhiezer, P.Fomin, N.Shul'ga (1970)

$$d\sigma_c = d\sigma_{coh}^{Born} \cdot \left(1 \pm \eta \frac{\theta_c^2}{\theta^2}\right), \qquad h\omega = \varepsilon$$

 $\eta: 1$ θ_c – crytical channelling angle

Higher Born Approximation in the CB Theory

A.Akhiezer, N.Shul'ga (1975)

$$N_{coh}: \min\left(\frac{l_{coh}}{a}, \frac{R}{\psi_a}\right)$$

$$\frac{Ze^2}{hc} = 1 \quad \Rightarrow \quad N_{coh} \frac{Ze^2}{hc} : \frac{R}{\psi a} \frac{Ze^2}{hc} = 1 \qquad \text{Quickly destroys for } \psi \to 0$$

PARADOX

This condition did not fulfill practically for experiments (1960-1970) on verification of F - T - U theoretical results.

But the experiments were in good agreement with this theory !!! Why ???

Eikonal, Semiclassical, Classical CB Theory

!!!

Semiclassical approximation

Classical Electrodynamics

$$\frac{N_c Z e^2}{hc} = \frac{R}{\psi a} \frac{Z e^2}{hc}? \quad 1$$

 $N_c \frac{Ze^2}{hc}$? 1, $h\omega = \varepsilon$

 $d\sigma^{(WKB)} = d\sigma \left\{ \stackrel{\mathbf{r}}{r_{cl}}(t) \right\}$

• Radiation is determined by the classical trajectory !!!

- It is necessary to know the types of particles' motion in crystal
- Same methods for description of CB and LPM effects !!!

New direction of research

The interaction of high-energy particles with matter in conditions of effectively strong interaction of the particle with atoms of media (semiclassical, classical approximations)

Проблемы, порожденные теорией когерентного излучения в кристаллах

LPM – effect (1953)

Development: LPM, TSF-effects etc. see report S.Fomin et al. at Channeling 2012¹⁸

TRANSITION RADIATION BY ELECTRON WITH EQUILIBRIUM FIELD

Total field:

$$\varphi = \varphi^C + \varphi^f$$

Boundary condition:

$$\vec{E}_{\perp}^{C}(\vec{\rho}, z = 0, t) + \vec{E}_{\perp}^{f}(\vec{\rho}, z = 0, t) = 0$$

Fourier integral for radiation field:

$$\varphi^{f}(\vec{r},t) = -\frac{e}{2\pi^{2}\nu} \int d^{2}k_{\perp} \int_{-\infty}^{\infty} d\omega \frac{1}{k_{\perp}^{2} + \omega^{2}/p^{2}} e^{i\left(z\omega\sqrt{1-k_{\perp}^{2}/\omega^{2}} - \omega t + \vec{k}_{\perp}\vec{\rho}\right)}$$
¹⁹

STRUCTURE OF TR ELECTROMAGNETIC FIELD

N.Shul'ga, S. Trofymenko, V. Syshchenko, Nuovo Cimento (2011)

$$E = 50 Mev \qquad \lambda \approx 0.1 cm$$
$$l_C \approx 2\gamma^2 \lambda \approx 20m \qquad l_T \approx \gamma \lambda \approx 10 cm$$

For t > 0 :

$$\mathbf{z} > \mathbf{0}: \quad \varphi(\vec{r}, t) = \left[\frac{e}{\sqrt{\rho^{2} \gamma^{-2} + (z - vt)^{2}}} - \frac{e}{\sqrt{\rho^{2} \gamma^{-2} + (z + vt)^{2}}}\right] \theta(t - r)$$
$$\mathbf{z} < \mathbf{0}: \quad \varphi(\vec{r}, t) = \left[-\frac{e}{\sqrt{\rho^{2} \gamma^{-2} + (|z| - vt)^{2}}} + \frac{e}{\sqrt{\rho^{2} \gamma^{-2} + (z - vt)^{2}}}\right] \theta(r - t)$$

The Problem of TR Measurement

IONIZATION ENERGY LOSSES

N. Shul'ga, S. Trofymenko, 2012

IONIZATION ENERGY LOSSES IN THIN AND THICK TARGETS

FIRST EXPERIMENT (Kharkov, 1963)

A.I. Alikhanian, G.M. Garibian, M.P. Lorikian, A.K. Walter, I.A. Grishaiev, V.A. Petrenko, G.L. Fursov

Electron energy losses in thin films of polystyrene of thicknesses $10^{-6}cm$ (a) and $2 \times 10^{-3}cm$ (b) 1 – theoretical curve without density effect 2 – theoretical curve with density effect circles show the measurement results

$20 \,\text{MeV} < \epsilon < 100 \,\text{MeV}$

IONIZATION ENERGY LOSSES BY HALF-BARE ELECTRON

N. Shul'ga, S. Trofymenko, 2012

*This is not the same as in G.Garibian and K.Ispirian JETP Lett, 1972*²

25

More in report S. Trofymenko et al. at Channeling-2012

CONCLUSIONS

- stabilizing effect for high-energy wave packets
- large and ultra large formation lengths for electromagnetic packets
- half-bare electron in bremsstrahlung and transition radiation
- half-bare electron in ionization energy losses (transition from Fermi to Bethe-Bloch formula)
- analogies in solid state physics (polaron),

in QCD (quark-gluon plasma, ...)

THANK YOU FOR ATTENTION!