Recent Progress in the Theory of the Crystalline Undulator

Andriy Kostyuk

October 16, 2012

Motivation

Based on R.Brinkmann *et al.* (Ed.) 'Tesla FEL. Technical design report. Supplement.'

Method

ChaS Channeling Simulator

- Based on the binary collision algorithm
- Simulates the 3D crystal lattice
- Uses *ab initio* distribution of electrons in the crystal
- Allows for analysis of the channeling, dechanneling and rechanneling of the projectile
- Calculates the spectral-angular distribution of the emitted radiation

a recently developed Monte Carlo code

Reliability of the Model

Photon energy shift due to	$\hbar\omega\sim E$	$\hbar\omega/E < 0.05$
recoil		
Projectile energy losses due	$E\gtrsim 10{ m GeV}$	
to the photon emission		
Quantum effects in the mo-	$E \lesssim 100 \; { m MeV}$	E = 855 MeV
tion of the projectile		
Influence of the crystal	$\hbar\omega\lesssim$ 200 keV	$\hbar\omega>1~{ m MeV}$
medium on the emission and		
propagation of the radiation		

Crystalline Undulator

V.V. Kaplin, S.V. Plotnikov and S.A. Vorob'ev, Zh. Tekh. Fiz. **50**, 1079-1081 (1980), (Sov. Phys. – Tech. Phys. **25**, 650-651 (1980)),

V.G. Baryshevsky, I.Ya. Dubovskaya and A.O. Grubich, Phys. Lett. A, **77**, 61-64 (1980).

Conditions for the Undulator Effect

$$L \sim \min[L_{\rm d}(C), L_{\rm a}(\omega)]$$

$$N_{\rm u} = L/\lambda_{\rm u} \gg 1$$

$$\Delta arepsilon /arepsilon \ll 1$$

$$C = F_{
m cf}/U'_{
m max} = 4\pi^2 Ea/U'_{
m max}\lambda_{
m u}^2 < 1$$

 $a > d$

- moderate dechanneling and, and photon attenuation
- large number of periods,

- large-amplitude regime.

A.V. Korol, A.V. Solov'yov, W. Greiner,
J. Phys. G 24, L45 (1998); Int. J. Mod. Phys. E 8, 49 (1999);
Int. J. Mod. Phys. E 13, 867 (2004).

Example: Electron-Based Crystalline Undulator

Undulator Conditions Revisited

a > *d* - *large-amplitude regime*.

Is it necessary?

$$\left. rac{d {\cal E}}{d \omega \, d \Omega}
ight|_{ heta = 0} \sim a^2 \omega^4$$

a < d is OK if $\omega_{\mathrm{u}} > \omega_{\mathrm{c}} \Leftrightarrow \lambda_{\mathrm{u}} < \lambda_{\mathrm{c}}$

$${\cal C}={\it F}_{
m cf}/{\it U}_{
m max}^{\prime}=4\pi^{2}{\it Ea}/{\it U}_{
m max}^{\prime}\lambda_{
m u}^{2}<1$$
 -stable channeling

Does violating this condition destroy the undulator effect?

Centrifugal Factor Is Irrelevant!!!

$$\lambda_{
m u} << \lambda_{
m c}, \qquad a < d$$

Spectra

Electron beam

Positron beam

SASP CU

- The condition $N_{\rm u} = L/\lambda_{\rm u} \gg 1$ can be easily fulfilled even for electrons.
- Much smaller relative width of the undulator peak.
- The undulator photons are harder than the channeling one: $\hbar\omega_u > \hbar\omega_c$.
- Much smaller ratio $\hbar \omega_u / E \Leftrightarrow$ cheaper accelerator!.

Challenges

Challenges

Conclusion

Small Amplitude Short Period Crystalline Undulator (SASP CU) (a < d, $\lambda_u < \lambda_c$) is predicted to be much superior in comparison to the crystalline undulator with large amplitude and long period (a > d, $\lambda_u > \lambda_c$)

Acknowledgements

I am very grateful to Hartmut Backe, Werner Lauth and Andrea Mazzolari for fruitful discussions.

I would like to acknowledge many year's collaboration with Walter Greiner.

A lot of thanks to Sultan Dabagov and all the people who helped him to organize the conference for giving me the opportunity to present my results.

The work was in part supported by DFG.

Thank you for your attention!