#### **Channeling-2012**

# LPM and TSF-effects (Features of non-dipole radiation by relativistic electron in thin crystal)

## S.P. Fomin, N.F. Shul'ga\* Akhiezer Institute for Theoretical Physics of NSC KIPT Kharkov, Ukraine \*e-mail: <u>shulga@kipt.kharkov.ua</u>

## **LPM – effect (1953)**



$$\frac{dE_{BH}}{d\omega} = \frac{4}{3} \frac{L}{X_0} \frac{E'}{E} \left( 1 + \frac{\omega^2}{EE'} \right)$$

$$X_0^{-1} = \frac{4Z^2 e^6 n}{m^2} \ln(mR)$$

$$\frac{dE_{LP}}{d\omega} \approx \frac{L}{X_0} \sqrt{\frac{2\pi}{3}} \frac{\omega E_0}{E}$$

# An effect confirmed after 40 years!

(SLAC – experiment Phys.Let. (1995); Rev.Mod.Phys. (1999)



CERN Courier 1994 E. Feinberg Природа 1994



0.15

0.1

0.05

0.15

0.1

0.05

0 ليبينيس 100 500

U 3% L<sub>Red</sub> 25 GeV

U 3% Lau 8 GeV

> 10 ω (MeV)



LPM



 $\Delta t = (k - kv_1)^{-1} \approx 2\gamma^2 / v = l_c \qquad \text{For} \quad \varepsilon = 50 \text{MeV}, \quad \lambda = 1 \text{cm}, \quad l_c = 200 \text{ m}$ 

E.Feinberg JETP 50(1966)202, A. Akhiezer, N.Shul'ga, S.Fomin Sov.Phys.Usp. 30(1987)197 Phys.Lett.A 114(1986)148 E. Feinberg (SETP, 1966, v. 50, 202)









### **Radiation in thin target (TSF-effect)**

F. Ternovskii, JETF 1960, N. Shul'ga, S. Fomin JETP Lett. 1978, 1996



## **Dependence on thickness**



7

## Suppression of radiation by relativistic electrons in a thin layer of matter (TSF effect)

 Predicted at KIPT - <u>1978</u> - N.F.Shul'ga, S.P.Fomin, JETP Letters, **27**(1978)126.

 Confirmed at CERN - <u>2009</u> - H.D.Thomsen et al., Physics Letters B 672 (2009) 323.

 H.D.Thomsen et al., Physical Review D 81 (2010) 052003.

**CERN NA63** SPS E = 149 GeV

"Channeling 2010", Ferrara, Italia A.S.Fomin, S.P.Fomin, N.F.Shul'ga *Nuovo Cimento (2011), in press* 



### HOW DOES ELECTRON RADIATE?



# **Analogs for LPM and TSF-effects**

- •Coherent bremsstrahlung, dynamical chaos
- Volume reflection
- Beam-beam coherent bremsstrahlung

LPM effect in crystal Shul'ga N., Fomin S., JETP Lett. **27** (1978) 126; Phys. Lett. **A114** (1985) 148. Laskin N., Mazmanishvili A., Shul'ga N., Phys. Lett. **A112** (1985) 240.

Multiple scattering in crystal Shul'ga N., Truten' V., Fomin S., J. Techn. Phys. **52** (1982) 2279.



**Multiple Scattering on Atomic strings** 

 $\psi: \psi_c$  $\psi_c = \sqrt{2U_0/\varepsilon}$ 



V. Beloshitskii, M. Kumakhov (1973), $\psi < \psi_c$ N. Shul'ga, V. Truten', S. Fomin (1982), $\psi > \psi_c$ 

#### **Dynamical Chaos at Multiple Scattering**





A. Akhiezer, N Shul'ga, V. Truten', Physics Reports, 1991

<u>CERN experiment:</u> <u>Theory</u>:

Bak J.F. et al. Nucl. Phys., B302 (1988) 525. Laskin N., Shul'ga N., Phys.Lett. A135 (1989) 147.



#### Coherent Radiation in Bent Crystal Planes N. Shul'ga, V. Boyko, V, Truten', 2008



#### Low frequency Radiation in Bent Crystal Planes



$$\frac{dE(\vartheta_e(b))}{d\omega} = \frac{2e^2}{\pi} \left\{ \frac{2\xi^2 + 1}{\xi\sqrt{\xi^2 + 1}} \ln\left(\xi + \sqrt{\xi^2 + 1}\right) - 1 \right\}, \quad \xi = \frac{\gamma\vartheta_e}{2}, \, \vartheta_e = \vartheta_e(b)$$
$$\frac{\langle E' \rangle}{E'_{BH}} \sim \frac{3e^2}{\pi} \frac{L_R}{L} \ln\left(\gamma\vartheta_e/2\right)$$

 $\frac{\langle E' \rangle}{E'_{BH}} \sim 1 \quad \text{for } \varepsilon = 100 \text{ GeV}, \ L = 1 \text{ mm}, \ L_R = 10 \text{ cm}, \ \ln(\gamma \vartheta_e / 2) \sim 1$ 

### Coherent radiation at electron collision with a short bunch



N. Shul'ga, D. Tyutyunnik, JEPT Lett. <u>78</u>(2003)700., Proc. of SPIE, v. 5974(2005)60.



 $\epsilon$ =5 Gev, L=0.1 cm,  $\rho$ =0.01 cm, N=10<sup>10</sup>,

$$\omega_c = \frac{4\gamma^2}{L} \approx 50 \text{ kev}, \qquad \gamma \vartheta_N \approx 1$$

N. Shul'ga, D. Tyutyunnik. JETP Lett. 78 (2003) 700. NiM B227 (2005) 152

#### FOURIER TRANSFORMATION OF ELECTRON'S FIELD COHERENT LENGTH, WAVE ZONE



$$\varphi(\mathbf{r},t) = \frac{e}{2\pi^2} \operatorname{Re} \int \frac{d^3k}{k} e^{ikr} \left\{ \frac{1 - e^{-i\left(k - kv_1\right)t}}{\omega - kv_1} e^{-ikv_1t} + \frac{1}{k - kv} e^{-ikt} \right\}$$
$$l_c = 2\gamma^2 / \omega$$

19



The total field for t > 0:

$$\varphi(\vec{r},t) = \theta(r-t)\varphi_{\vec{v}}(\vec{r},t) + \theta(t-r)\varphi_{\vec{v}'}(\vec{r},t)$$

A. Akhiezer, N. Shul'ga *High Energy Electrodynamics in Matter*, 1996 N. Shul'ga, V. Syshchenko, S. Shul'ga // Phys. Lett. A, 2009

### APPROXIMATION OF THE COULOMB FIELD BY THE PACKET OF PLANE WAVES (EQUIVALENT PHOTON METHOD)

$$\varphi_{free} \begin{pmatrix} \mathbf{r} \\ r, t \end{pmatrix} = \operatorname{Re} \int \frac{d^3 k}{(2\pi)^3} e^{i \begin{pmatrix} \mathbf{r} \\ kr - kt \end{pmatrix}} C_k$$
$$C_k = \frac{8\pi e \Theta(k_z)}{k_{\perp}^2 + k_z^2 / \gamma^2}$$

$$\varphi_{free}({\mathbf{r}},t) = \operatorname{Re} \int dk \varphi_k({\mathbf{r}},t)$$

$$\varphi_k(\mathbf{r},t) = \frac{2}{\pi} e^{ik(z-t)} \int_0^\infty \frac{\theta d\theta}{\theta^2 + \gamma^{-2}} J_0(k\rho\theta) e^{-ikz\theta^2/2}$$

21

### WAVE AND PRE-WAVE ZONES

$$\varphi_k(\mathbf{r},t) = \frac{2}{\pi} e^{ik(z-t)} \int_0^\infty \frac{\theta \, d\theta}{\theta^2 + \gamma^{-2}} J_0(k\rho\theta) e^{-ikz\theta^2/2}$$

pre-wave zone

$$\varphi_k \left( \stackrel{\mathbf{r}}{r}, t \right) \approx \frac{2}{\pi} K_0 \left( k \rho / \gamma \right) e^{ik(z-t)}$$

$$\varphi(\mathbf{r},t) = \frac{e}{\sqrt{(z-t)^2 + \rho^2/\gamma^2}}$$

 $kz\vartheta^2/2 \ll 1$ 

$$z \ll l_c$$

$$\varphi_k \begin{pmatrix} \mathbf{r} \\ r, t \end{pmatrix} = -\frac{2i}{\pi} \frac{1}{\vartheta_0^2 + \gamma^{-2}} \frac{1}{kr} e^{ik(r-t)} \qquad kz \vartheta^2/2 \gg 1$$
$$\vartheta_0 = \rho/z \qquad z \gg l_c$$

N.Shul'ga, V. Syshchenko, S. Shul'ga. Phys. Lett. A 374 (2009) 331

### **The Problem of Bremsstrahlung Radiation Measurement**

N.Shul'ga, S. Trofymenko, V. Syshchenko JETP Lett., 93 (2011) 1

$$\sum_{\substack{z \\ detector\\ p \\ z \\ detector\\ detector\\$$

## TRANSITION RADIATION BY ELECTRON WITH NONEQUILIBRIUM FIELD

N.Shul'ga, S. Trofymenko, V. Syshchenko JETP Lett., 93 (2011) 1



Transition radiation by "torn away" field :  $\frac{d\mathcal{E}}{d\omega do} = \frac{e^2}{\pi^2} \frac{\vartheta^2}{(\gamma^{-2} + \vartheta^2)^2}$ does not depend on  $z_0$ 

**Transition radiation in wave zone by electron with nonequilibrium field :** 

$$\frac{d\boldsymbol{\mathcal{E}}}{d\omega \, do} = \frac{e^2}{\pi^2} \frac{\vartheta^2}{\left(\vartheta^2 + \gamma^{-2}\right)^2} 2\left\{1 - \cos\left[\frac{\omega \, z'_0}{2}\left(\gamma^{-2} + \vartheta^2\right)\right]\right\}$$

# CONCLUSIONS

- Analogs of LPM and TSF effects
  - thick crystals 10 GeV → 100 GeV
  - thin crystals
  - volume reflection from bent crystal planes
  - beam-beam coherent radiation
- Pre-wave zone for bremsstrahlung
- Transition radiation by half-bare electron

# THANK YOU FOR ATTENTION!