

💴 🕅 Compose Mail - flu 🎇 Current local time i 🔤 NUS WebMail	🕺 da Alghero Theatre 抣 CDSAGENDA V.5 Jo 👔 Archive retrieving s 🔀 ::PARTICIPANTS « 🚳 Channeling 201 🗴 🕂		
genda. infn.it /contributionDisplay.py?contribId=4&sessionId=11&confId=4688	🏠 マ 😋 🚼 - channeling 2012	٩	^ ⊡ -
ch Internet 🔍 🗸 🔶 FAQ			
nneling 2012 🔹 Search 🔹 🙂 🥴 🐼 🔄 🔎 🔎	Hot 108 🗸 🖬 🎬 🕒 🚎 IMnews 👺 Block popups		
Alghero Theatre - Teatr 👻 🔽 - Videos vide 👀 ன 💽	🗩 💿 🛛 🐨 🔚 Local News (CHANGE) 💽 Download 🕞		× +

	Channeling 2012	nero Sardegna Italy	
	Home > Timetable > Session details > Contribution details		*
ew			
fic Program			
r Abstracts			
ıy abstracts	Transmission Axial and Planar Channeling of Pr	rotons from Ultra Thin(55nm) Si.	
a new abstract			
ble oution List	Content: The report contained information about my project includes the experimental observation of Rainbow Channeling fine angular or microprobe facility. The observation of these fine angular struct	fabrication of thin silicon [001] membranes (55nm) and the distributions through these membranes using a nuclear ures in the channeling patterns will be the first experimental	
index	proof of the simulations done by various groups in the past 25 scattering in the thinner silicon crystals. Simulations predicted t	years. This is possible because of the reduced multiple the existence of a super focusing effect of ion beam by each	
ration	unit cell of a thin crystal membrane. The predicted super focuse atomic- Nuclear Microscope. However, this was never experime	ed spot size is about ~20 pm and can be used as a Sub ntally proven as thin enough crystals were not available.	
ation Form	These experimental results confirm the many Rainbow Channel evidences to the existence of the Super focusing effect.	ing simulations previously done and provide further	
participants	Id: 4		
	Place: Hotel Calabona Room: Hotel Calabona		
	Starting date: 25-Sep-2012 11:10 (Europe/Rome)		
	Duration: 25'		
	Primary Authors Mr. MOTAPOTHULA, MALLIKARJUNA RAP (GRADUATE STUDE)	NT)	
	Co-Authors: Ms. DANG, Zhiya (GRADUATE STUDENT)		
		(W) M	cAfee 🎯
D 😂	📋 🕹 🔄 🌊 💋 📼	🏶 🇋 ()) in. 🔺	5:42 PM 23/9/2012

ION CHANNELING IN CRYSTALS

m@nus.edu.sg

I need to thank

M. A. RANA, A. OSMAN - FLUX SIMULATIONS NESKOVIC, SRDJAN. PETROVIC - RAINBOW CODE SIMULATIONS

Z. Y. DANG - HELPED IN FABRICATING THIN MEMBRANES T. VENKATESAN - FRUITFUL DISCUSSIONS

Introduction, Motivation

Experimental results

Simulations

Conclusions & Future plans

at aligned case (Star)

2MeV protons 300nm thick [001]Si

0.2 0

0.15

(deg)

-0.15

-0.15

0

Monte Carlo simulations(LAROSE) • Thermal vibration ignored • multiple scattering ignored • <u>Lindbard</u> potential H. F. Krause, Phys Rev B 33, 6036, 1986. H. F. Krause, Phys Rev A 49, 283, 1994.

Simulated

H.F.Krause, Phys Rev A 49, 283, 1994.

Precise determination of ion channel potentials. Si-H⁺ (ZBL)

Experimental observation of Spatial-super focusing effect.

Capturing and understanding the fine features in

the axial channeling patterns.

55 nm membrane [001] Si

55 nm thin Si membrane

145 nm SiO₂ on 55 nm Si

<mark>—</mark> (500 μm)

Dang et al., Appl. Phys. Lett. 99, 223105 (2011)

Dang et al., Appl. Phys. Lett. 99, 223105 (2011)

Ion beam applications

Axial channels

• Doughnuts show ring like shape distribution.

• How they show at early stage of its evolution?

M. Motapothula et al., NIMB 283 (2012) 29-34

Channeling: tilted case

increasing axial tilt

increasing axial tilt

[011]-2MeV

0.5°

Channeling. tiltod rase

[011]

22

M. Motapothula et al., NIMB 283 (2012) 29-34

(a) (b)

M. Motapothula et al., PRL 108,195502(2012) 0.05°→

Simulations comparison

{111} Planar channeling

Depth (1µm) ²⁶

Data is only from: Ions incident on Narrow planes

Captured Early stage axial channeling Doughnuts Squares & Hexagons {111} plane
 Showed
 It's impact
In planes/axes

- Captured the best Axial channeling features coming from the early stage of its evolution.
- Observed the minor axial-channeling patterns for the first time.
- Doughnuts are squares, hexagons etc...

but not rings at every axis.

- Understood narrow {111} planar channeling.
- Observed the separate axial like behaviour at axes which contain narrow {111} plane.

Future plans

Short movie:

The central bright dots are only moving and merging with the side bright regions by tilting away The large bright dots are coming from the side-middle of the unit cell where the potential is not lowest (moderate).

Only 2 middle central bright dots are moving first when tilted

Short movie:

The central bright dots are only moving and merging with the side bright regions by tilting away The large bright dots are coming from the side-middle of the unit cell where the potential is not lowest (moderate).

$$=\frac{Z_1 Z_2 e^2}{r} [0.35 \exp(-br) + 0.55 \exp(-4br)]$$

 $+0.10 \exp(-20br)$],

ZBL

Hartree-Fock

250

FLUX Monte Carlo Simulations Angular Distribution

37

0.5

0.4

0.3

0.2

0.9 0.8

0.9

0.8

0.7

0.6

-0.5

0.4

0.3

0.2

0.1

0.7 0.6 -0.5 -0.4 0.3 0.2 0 1

0.9 0.8 0.7

-0.6 -0.5 0.4 0.3

0.2 0.9

0.8 0.7 0.6 -0.5 0.4 0.3 0.2

0.1

0.7

-0.6

-0.4

0.2

0.8

0.7

0.6

-0.5

0.3

ln 2

```
FLUX ZBL
```

- 1. The dot is at side edge (not inside)
- 2. There should be a curvature
- 3. No center bright intensity distribution

700 KeV 55 nm [001]

20 40 60 80 100 120 140 160 180 200

Decreasing the screening radius

500 KeV 55 nm ^{0.5 MeV} [001]

1. Deposit a monolayer of metallic film on membrane and clamp a substrate on top.

2. The super focused channeled protons recoil the metal atoms into the Si substrate.

3. Observing these Recoiled metal atoms by STM can prove the Super focusing effect.

M. Motapothula et al., NIMB 283 (2012) 29-34

Α 2ψ_p

{110} plane near [112] axis

$$\Delta p_{\perp}(b) = \int_{0}^{\infty} F_{\perp} dt$$
$$\approx \frac{1}{v} \int_{-\infty}^{\infty} F_{\perp} dz$$
$$= \frac{-1}{v} \frac{\partial}{\partial b} \int_{-\infty}^{\infty} V(\sqrt{z^{2} + b^{2}}) dt$$

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \phi(r/a)$$

$$\phi(r/a) = \sum_{i} \alpha_i \exp(-\beta_i r/a),$$

Δ

