Resonant Coherent Excitation of Relativistic Highly Charged Ions at Planar Channelling in Si-Crystals

1

A. Ananyeva

A. Ananyeva^{a,b}, Y. Nakano^{c,d}, H. Braeuning^b, A. Braeuning-Demian^b,
 D. Dauvergne^e, Yu. L. Pivovarov^f, Y. Kanai^d, T. Shindo^c, S. Suda^c, T. Azuma^{c,d}, Y. Yamazaki^d

^aGoethe-Universität, Frankfurt am Main, Germany ^bGSI Helmholtzzentrum, Darmstadt, Germany ^cTokyo Metropolitan University, Tokyo, Japan ^dRIKEN Advanced Science Institute, Tokyo, Japan ^eIPNL - Institut de Physique Nucléaire de Lyon, France ^fNational Research Tomsk Polytechnic University, Tomsk, Russia

GSI Accelerator group: M. Steck, C. Dimopoulou, S. Reimann, C. Kleffner

Supported by:

GSI - Helmholtzzentrum für Schwerionenforschung GmbH Grants-in-Aid for Scientific Research (No. 19104010) from JSPS, Japan.

A. Ananyeva

Content

- Motivation
- Resonant Coherent Excitation (RCE)
- Experimental Setup at GSI
- Results
- Summary and Outlook

Motivation

Precision tests of QED in strong field of the heavy highly-charged ions

Motivation

Graph: c/o Y. Yamazaky

[1] P. Beiersdorfer – Phys.Rev.Lett. V 71 N24, 1993. – p. 3939-3942
[2] S.W. Epp et.al., Phys. Rev. lett. 98, 1830001 (2007)
[3] C. Brandau et al., Phys. Rev. lett. 91, 0732021(2003)
[4] K Komaki et al. NIM B 146 (1998) 19-28

Motivation

Observation of RCE of the heaviest stable ion

$$E \sim -\frac{z^2}{n^2}$$

	Excitation energy	Projectile energy
Atomic RCE	<10 keV	0.1 - 2 GeV/u (GSI today)
Nuclear RCE	~ 10 keV and higher	10 - 30 GeV/u (FAIR future)

 To investigate the limits of the coherent excitation as possible spectroscopic method

Resonant Coherent Excitation

Planar channeling motion in a crystal

- Okorokov predicted and pointed first time RCE [1]
- Datz made the first experimental confirmation of RCE (with light ions) [2]
- RCE observation with middle heavy ions [3]

[5] V.V. Okorokov, Yad. Fiz. 2 (1965) 1009 [Sov. J. Nucl. Phys. 2, (1966) 719] A. Ananyeva

- [6] S. Datz et al, Phys. Rev. Lett. 40 (1978)
- [4] K. Komaki et al., NIM B 146 (1998) 19-28

7

ionization

RCE in Si-crystal target

Frequency of the oscillating crystal potential $V = \gamma \langle \vec{g} \cdot \vec{v} \rangle$

Transition energy $E_{tr} = hv_{field} = \gamma h \vec{v} (k \cos \theta / A + l \sin \theta / B)$

$$A = \frac{a}{\sqrt{2}}$$
; $B = a$

GSİ

Resonant Coherent Excitation of Li-like U

Atomic Level Scheme of Li-like U

$$2P_{3/2} \rightarrow 2S_{1/2}$$

GSİ

A. Ananyeva [1] P. Beiersdorfer – Phys.Rev.Lett. V 71 N24, 1993. – p. 3939-3942

Experimental parameters

Transition energy $E_{tr} = hv_{field} = \gamma h \vec{v} (k \cos \theta / A + l \sin \theta / B)$

- Beam energy E = 192 MeV/u
- Miller indexes k = 2, l = 1
- Ion incident angle relatively to the target $\theta = 4,7^{\circ}$

Cave A – Setup Exp S351

Beam preparation

Target

Si-crystal: 7 µm thickness 100 mm² area

Rotation with a step of $\theta=0,02^\circ$

ion beam

Alignment of the target along 2 direction and rotation around 3 axis

Detectors

X-rays detection

The Silicon Drift Detectors (SDD) [5]

- ➢ 80 mm² active area
- ➤ 450 µm thickness
- $\succ \epsilon = \sim 99\%$ for E_γ= 5.9 keV
- Solid angle ~ 4.7*10⁻³
- Reset-type low noise preamplifier
- Peltier cooling system (+20°C)
- Vacuum compatible

Calibration Fe⁵⁵ FWHM = 190 eV @ 5.9 keV

lons detection

2D Position Sensitive MCP Detector

- Chevron configuration
- Read-out: Delay line
- ≽Ø75 mm
- Position resolution < 0.5 mm</p>
- > 100% detection efficiency, rate dependent

A. Ananyeva [7] KETEK GmbH, Germany URL: http://ketek.net

X-Ray Spectra

Doppler transformation

$$E_{lab} = \frac{E_{\gamma}}{\gamma \left(1 - \beta \cos \theta_d\right)}$$

$$\theta_d = \pm 33^\circ$$

$$E_{\gamma} = 4570.8 \ eV$$

X-ray emitted by $191.2 \text{ MeV/u} \text{ U}^{89+}$ ions resonant excited in the Si-crystal in the (220) planar orientation.

FWHM ~ 200 eV @ 7,1 keV
$$\frac{\Delta E}{E} \approx 10^{-2}$$

Resonance curve

Photon yield dependence on the incident ion angle

[1] P. Beiersdorfer – Phys.Rev.Lett. V 71 N24, 1993. – p. 3939-3942

Transition Energy and Resonance width

	ESR experiment	
Transition energy	4461.11±1 eV	
FWHM	4.1 eV	

• Natural width of the resonance ~ 10⁻⁶

Experimental parameters	Value	Contribution to FWHM
	ESR experiment	
Momentum distribution	4×10 ⁻⁵	0.3 eV
Energy loss	0.15 MeV/u	1.9 eV
Energy straggling	0.008 MeV/u	0.2 eV
Angular straggling	0.16 mrad	0.06 eV
Beam divergence	1.4÷4.5 mrad	1.6÷4.8 eV

Summary and Outlook

- RCE of Li-like relativistic U have been detected with a count rate of 7 photons per second
- The transition energy $E_{tr} = 4461.11 \pm 1 \text{ eV}$ of $2p_{3/2}-2s_{1/2}$ in U⁸⁹⁺ was defined with energy resolution of 10^{-3}

To improve the precision

- Better control on the beam divergence
- Better control on the energy loss: a new measurement with a thinner target

To investigate the anisotropy of the radiation

Thank you for your attention!

