

WP2 - Research Infrastructures for Nuclear Physics

Task 2.5 – Service Improvements

Subtask C2 – Targets for high intense beams

Targets for Nuclear Physics within EURO-LABS: activities at INFN – LNS

<u>Vasilis Soukeras¹</u>, Manuela Cavallaro¹, Antonio Massara¹, Daniela Calvo², Antonio Comite³, Maria Fisichella^{1,4}, Mauro Giovannini³, Martina Ursino¹ for the WP2.5.2 Collaboration

¹Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud (INFN – LNS), Catania, Italy

²INFN- Sezione di Torino, Torino, Italy

³University of Genova and INFN – Sezione di Genova, Genova, Italy

⁴Present address: Grand Accelerateur National d'Ions Lourds (GANIL), Caen, France

One – day meeting on "Targets for Nuclear Physics" 15 May 2025

Targets for Nuclear Physics experiments: solid, gas or liquid?

> Solid targets are the most common case

- Most elements and materials useful as targets are solid in standard conditions of pressure and temperature.
- ❖ Much simpler setup

Gas and liquid targets may be used in some cases

- ❖ Need of an active target
- Specific properties of some targets

☐ In this presentation the focus will be on solid targets developed and characterised at INFN -LNS

- ➤ The target laboratory at INFN —LNS in Catania has over thirty years of experience in target preparation for nuclear physics experiments and interdisciplinary physics
- Users are not only local scientists but also researchers from other universities and laboratories worldwide

A. Massara et al., EPJ Web of Conferences 285, 06003 (2023)

L300 TBJ evaporator

Equipment for target production

- ✓ L300 Thermal Bell Jar (TBJ) evaporator.
- ✓ L560 Leybold-Heraeus evaporator
- ✓ UNIVEX 400 Leybold evaporator
- ✓ Cold rolling mill

- 2 resistive sources
- A probe to monitor the backing temperature
- A quartz crystal micro balances

- ➤ The target laboratory at INFN —LNS in Catania has over thirty years of experience in target preparation for nuclear physics experiments and interdisciplinary physics
- Users are not only local scientists but also researchers from other universities and laboratories worldwide

L560 Leybold-Heraeus

A. Massara et al., EPJ Web of Conferences 285, 06003 (2023)

Equipment for target production

- ✓ L300 Thermal Bell Jar (TBJ) evaporator.
- ✓ L560 Leybold-Heraeus evaporator
- ✓ UNIVEX 400 Leybold evaporator
- ✓ Cold rolling mill

- Evaporation by
 - e-beam heating source
 - ✓ resistive heating source
- Quartz crystal micro balance
- Halogen heating elements to fix temperature

- ➤ The target laboratory at INFN —LNS in Catania has over thirty years of experience in target preparation for nuclear physics experiments and interdisciplinary physics
- Users are not only local scientists but also researchers from other universities and laboratories worldwide

UNIVEX 400 Leybold evaporator

A. Massara et al., EPJ Web of Conferences 285, 06003 (2023)

Equipment for target production

- ✓ L300 Thermal Bell Jar (TBJ) evaporator
- ✓ L560 Leybold-Heraeus evaporator
- ✓ UNIVEX 400 Leybold evaporator
- ✓ Cold rolling mill

- ➤ The target laboratory at INFN —LNS in Catania has over thirty years of experience in target preparation for nuclear physics experiments and interdisciplinary physics
- Users are not only local scientists but also researchers from other universities and laboratories worldwide

A. Massara et al., EPJ Web of Conferences 285, 06003 (2023)

Cold rolling mill

Equipment for target production

- ✓ L300 Thermal Bell Jar (TBJ) evaporator
- ✓ L560 Leybold-Heraeus evaporator
- ✓ UNIVEX 400 Leybold evaporator
- ✓ Cold rolling mill

LNS Target lab website with some examples of targets produced in the lab: https://www.lns.infn.it/en/targets.html

The target lab at INFN - LNS: characterisation

Equipment for target characterisation

A. Massara et al., EPJ Web of Conferences 285, 06003 (2023)

✓ Chamber for Alpha-particle Characterisation of target Thickness and Uniformity by Scanning (CACTUS)

- ✓ CACTUS allows for the characterisation of the targets in terms of thickness, local and global non uniformity.
- Technique: Alpha particle spectroscopy (APS)

- Chamber diameter ~1m
- Host different types of target frame
- Scan different regions of the target surface with a high precision (1 mm) thanks to a rotational system and a video camera

The target lab at INFN – LNS: characterisation

Equipment for target characterisation

A. Massara et al., EPJ Web of Conferences 285, 06003 (2023)

 \checkmark Energy calibration based on 2 α-sources (148Gd & 241Am) covering a broad energy range

Target characterisation at INFN – LNS

Why characterisation?

- ✓ measure the average thickness
- ✓ determine the non uniformity of the samples

Characterisation is essential towards the selection of the most suitable manufacturing procedure!

How?

- Alpha Particle Spectroscopy (APS) technique using the CACTUS facility
- Comparison with simulations to determine the **local non uniformity** in a specific irradiated area of the sample. The thickness deviation (σ_t/t) is related to the non uniformity as follows:

$$\frac{\sigma_t}{t} = \frac{\sigma_{non-unif}}{\Delta E} = \frac{\sqrt{\sigma_{meas}^2 - \sigma_{sim}^2}}{\Delta E}$$

M. Fisichella et al., submitted for publication in Eur. Phys. J. A (2025)

Irradiation of different areas of the sample to determine the global non – uniformity

Global non – uniformity ≡ deviation thickness between the different irradiation points

Target characterisation at INFN – LNS: characterisation of a multilayer graphene sample

Experimental α – spectrum presented in blue in comparison with the simulated one presented in red. From the σ_{meas} and σ_{sim} we can determine the

 $\sigma_{non-unif}$

Typical experimental α – spectra in 5 different irradiated points of the same sample

Target characterisation at INFN – LNS: characterisation of a target evaporated onto a substrate

- 1) APS and characterisation of the substrate
- 2) Evaporation of the target material onto the substrate
- 3) APS using (target + substrate) and characterisation of the target

C (graphene) 0.321 mg/cm² (1.59 um) dE=247keV

Te evaporated on a) with a thickness of 0.253 mg/cm² dE=77keV

Target production with evaporation in standard conditions

Standard evaporation conditions:

- 1. Low evaporation rate
- 2. No backing heating
- 3. No buffer

LNS Target lab website with some examples of targets produced in the lab: https://www.lns.infn.it/en/targets.html

Standard evaporation conditions

	Tellurium	Germanium	Selenium	Molybdenum
Evaporator	L300 resistive source	L560 resistive source	L300 resistive source	L560 e-beam
Used material	0.4 g	0.6 g	0.5 g	0.6 g
Distance source – backing	210 mm	250 mm	250 mm	200 mm
Heating substrate	NO	NO	NO	300 °C
Buffer	NO	NO	NO	NO
Evaporation rate	0.2 Å/s	0.2 Å/s	1 Å/s	0.3 - 0.4 Å/s

M. Fisichella et al., submitted for publication in Eur. Phys. J. A (2025)

Target production: some particular cases

- There are several materials on which the application of standard evaporation conditions did not provide satisfactory results.
- ➤ Depending on our needs, the conditions may be modified accordingly (e.g. the **Mo** case) with satisfactory results
- ➤One of the particular case is the **Sn**: development of Sn targets at standard or even at non-standard conditions is a difficult task!

@ LNS, M. Fisichella, PhD thesis (standard evaporation conditions)

@ TRUSTECH, F. Pinna, PhD thesis

Target production: the case of Sn

➤ One of the particular case is the **Sn** : development of Sn targets at standard or even at non-standard conditions is a difficult task!

- \square Sn (250 μg/cm²) + C (40 μg/cm²) Evaporation Rate 10 Å/s
- Evaporation at standard conditions
- ☐ Similar behaviour for all 5 samples of the same evaporation

Target production: the case of Sn

➤One of the particular case is the **Sn**: development of Sn targets at standard or even at non-standard conditions is a difficult task!

- Repeatability tests to be performed
- Evaporation with and without Bi buffer to be performed with the new UNIVEX 400 evaporator

- \Box Sn (250 μg/cm²) + Bi (100 Å) + C (40 μg/cm²) Evaporation Rate 10 Å/s
- ☐ Evaporation at low evaporation rate and without target heating but, with a buffer
- ☐ Similar behaviour for all 6 samples of the same evaporation

Please note:

Bi 100 Å = 2.8×10^{16} at/cm² C 40 µg/cm² = 2.0×10^{18} at/cm² Sn 250 µg/cm² = 1.2×10^{18} at/cm²

Targets for high – intense beams

- Experimental campaigns with high intensity beams are planned at INFN – LNS
- > The case of NUMEN experimental campaign:
 - ❖ ¹8O and ²⁰Ne beams at energies >15MeV/u, beam intensity up to 10¹³
 ions/sec → deposition of several W/cm² in the target
 - Isotopically enriched target will be deposited on a highly thermally conductive foil of graphene
 - ❖ A cooling system for the target will be used
 - Target materials: Ca, Ge, Se, Zr, Mo, Cd, Pd, Sn, Te, Sm, Pt and many other with a typical thickness of ~ 250 500 μg/cm²
 - Both target and substrate should be as uniform as possible to maintain high energy resolution
 - If possible, we should avoid buffer materials
- Intense activity on target development and characterisation is ongoing in collaboration with INFN-Torino, INFN-Genova, University of Genova, INFN-LNL and University of Catania

See also next talk by Daniela Calvo!

F. Cappuzzello et al., Int. J. Mod. Phys. A 36, 2130018 (2021)

Summary and future perspectives

☐ The development of the appropriate target is essential for the success of nuclear physics experiments ☐ The target characterisation: ✓ Provide a tool to examine if the target produced is indeed suitable for the experiment ✓ is of great importance towards the selection of the most suitable manufacturing procedure ☐ Target development and characterisation are essential towards the success of large — scale experimental campaigns with high – intensity beams, scheduled in the near future at INFN – LNS ☐ A protocol was established for the characterisation of both self – supported and (target + substrate) samples by means of the determination of local and global non – uniformity ■ New opportunities with the new evaporator recently installed at INFN – LNS