RGH UPDATE

Lorenzo Polizzi – University of Ferrara

COVERED PHASE SPACE and FUTURE IMPROVEMENT for MULTI-DIMENSIONAL SSA MEASUREMENT

Lorenzo.polizzi@unife.it lpolizzi@fe.infn.it

DATA ANALIZED

This analysis uses already selected data, generated from **Duke University** (provided by Matthew McEneaney).

It will consider Semi-Inclusive DIS processes with a single π^+ in the final state, from collision among e^- and a transverse polarized target of NH_3 .

While Duke will focus on **dihadron** processes $(\pi^+\pi^-)$.

The objective is to highlight that **RGH** has the potential to explore a **different** and **uncharted phase space** compared to previous **HERMES** and **COMPASS** analyses.

And also to compare the precision of spin asymmetry measurements (in 4D) with those from previous studies in lower dimensions, such as **HERMES** (3D) and **COMPASS** (2D).

DIFFERENT REGION COVERED - $x_B vs Q^2$

Physics letters B 770(2017)138-145

Lorenzo Polizzi

REGION COVERED - $x_B vs Q^2$

Lorenzo Polizzi

REGION COVERED - $x_B vs Q^2$

BIN DEFINITION – CLAS RGH

Generated $2 \cdot 10^7$ events with clasdis by Matthew from Duke U.

Cuts: $Q^2 > 1 \ GeV^2$; y < 0.9; z > 0.2; $P_h > 1 \ GeV$; $M_x > 1.6 \ GeV$; $x_F > 0$.

SSA STATISTICAL ERROR OVER THE 4D SCALE (50D)

The **RGH projected statistics** where performed by Duke U. using the fall2022 RGC. The **error** on the **A** was calculated as:

$$\sigma_{RGH} = \sigma_{RGH} \cdot \frac{P_{t,RGC}}{P_{t,RGH}} \cdot \sqrt{\frac{N_{RGC}}{N_{RGH}}}$$

Assuming a target polarization $P_{t,RGH} = 0.85$ and A = 0.1.

Only bin with a statistical error < 4% are filled in the plot.

SSA STATISTICAL ERROR OVER THE 4D SCALE (100D)

The **RGH projected statistics** where performed by Duke U. using the fall2022 RGC. The **error** on the **A** was calculated as:

$$\sigma_{RGH} = \sigma_{RGH} \cdot \frac{P_{t,RGC}}{P_{t,RGH}} \cdot \sqrt{\frac{N_{RGC}}{N_{RGH}}}$$

Assuming a target polarization $P_{t,RGH} = 0.85$ and A = 0.1.

Only bin with a statistical error < 4% are filled in the plot.

TMD FACTORIZATION REGIME - HERMES

This plot display the **mean value** of the fraction $\frac{P_{hT}}{zQ}$ in each bin.

The upcoming **RGH** analysis will enable the exploration of a **higher** x_B region compared to that accessed by **HERMES**, remaining in a similar **TMD regime**.

Here the RGH bins are modified to imitate the ones from HERMES.

z bins	$P_{h\perp}$ bins		
]0.20; 0.28]	$]0.00{ m GeV}; 0.23{ m GeV}]$		
]0.28; 0.37]	$]0.23{ m GeV}; 0.36{ m GeV}]$		
]0.37; 0.49]	$]0.36{ m GeV};0.54{ m GeV}]$		
]0.49; 0.70]	$]0.54{ m GeV};2.00{ m GeV}]$		

Hermes bin definition

TMD FACTORIZATION REGIME - COMPASS

COMPASS (avaiable data at the moment) performed a two dimensional measurement.

The **bin distributions** of each experiment in the $\langle x_B \rangle - \frac{\langle P_{hT} \rangle}{\langle z \rangle \langle Q \rangle}$ plane is shown here.

This plot emphasize the power of the multi-dimensional measurement avaiable with RGH.

Large number of bins are present in the lower sector of the rescaled transverse momentum.

Phase space population for all the avaiable bin

CONCLUSION & NEXT STEPS

- Single hadron and dihadron RGH analyses would bring new insights into uncharted region of the nucleon's structure thanks to the new avaiable phase-space coverage.
- The physics of the process should be able to provided **sensible measurement** for the **TMD** calculations as **HERMES** and **COMPASS** have done previously.
- The **uncertainty** in the SSA measurment is **still undestudies**, for this reason, the bin selection is still under evaluation and the results are to be taken with proper considerations
- Creation and extrapolation of a hand-generated asymmetry (following the implementation steps provided by HERMES in the polarization of a Monte Carlo set) by ourself has to be implemented.
 + studies of asymmetries such as Sivers, Collins and higher leading-order terms will be added.

THANKS FOR YOUR ATTENTION

$z vs P_{hT}$ bin quality on $x_B vs Q^2$ scale

OLD BIN DEFINITION – CLAS RGH

Q ² [GeV ²]	x _B	Ζ	P _{hT} [GeV]
1.00 – 2.50	0.05 - 0.12	0.20 - 0.30	0.00 - 0.20
1.00 - 2.00 & 2.00 - 4.00	0.12 - 0.20	0.30 - 0.40	0.20 - 0.40
1.20 - 2.75 & 2.75 - 5.75	0.20 - 0.30	0.40 - 0.45	0.40 - 0.70
1.40 - 3.75 & 3.75 - 7.50	0.30 – 0.45	0.45 - 0.80	0.70 - 1.20
1.75 - 5.50 & 5.50 - 9.00	0.45 - 0.80		

Lorenzo Polizzi

SIVERS UNCERTAINTY

In this plot the Q^2 regions were keep togheter to have a correct comparison with the measurement of HERMES JHEP12 in 2020.

The errors where calculated as:

$$\sigma_{UT} = \frac{1}{P} \sqrt{\frac{1 - (P \cdot A)^2}{Y_{RGH}}}$$

With: P = 0.85 and $Y_{RGH} = evt \cdot \frac{5}{4}$ which represent the projection of the statistic over 40mln events taking into account dilution.

SIVERS UNCERTAINTY

