

BDX update

Marco Spreafico

On behalf of BDX collaboration

30 - 04 - 2025

Light C)ark	Matte
0000		

BDX 0000000000000 BDX-MINI 0000

Dark Matter

- Light Dark Matter
- Dark Matter search

BDX

- Experimental setup
- Physics reach
- Status and perspective

BDX-MINI

- Experimental setup
- Results
- AI Reach Optimization

Outlook

Light Dark Matter	BDX	BDX-MINI	Outlook
●000	0000000000	0000	O
Dark Matter Problem			

Astrophysical observations suggest existence of DM

- $\rightarrow~$ Information only from gravitational interaction
- \Rightarrow No clue on DM nature

Common assumption: thermal origin of DM

- $\rightarrow~$ DM we see comes from an epoch of thermodynamical equilibrium with SM
- ightarrow constrain on available mass range
- $\rightarrow~$ strong constraint on viable DM \rightarrow SM interaction

Thermal DM

Light Dark Matter	BDX	BDX-MINI	Outlook
0●00	0000000000	0000	O
Light Dark Matter - [Dark Photon model		

Simplest possibility: "vector portal"

 $\rightarrow U(1)$ gauge boson (dark photon) coupling to electric charge

 $\mathcal{L}_{LDM} \sim g_D A'_{\mu} J^{\mu}_{\chi} + \varepsilon e A'_{\mu} J^{\mu}_{EM} + [...]$

Annihilation in SM:

Model parameters:

- Dark Photon mass $m_{A'}$, coupling to SM ε
- Dark Matter mass m_χ , coupling to DM g_D ($lpha_D\equiv g_D^2/4\pi$)

$$y \equiv \frac{g_D^2 \epsilon^2 e^2}{4\pi} \left(\frac{m_\chi}{m_{A'}}\right)^4 \sim \langle \sigma v \rangle_{relic} m_\chi^2$$

Light Dark Matter	BDX	BDX-MINI	Outlook
00●0	0000000000	0000	O
Light Dark Matter			

Direct detection not suited for sub-GeV DM searches:

- DD experiments optimized for $m_{\gamma} > \text{GeV}$

 - $ightarrow E_R \propto m_\chi^2/m_N$ \Rightarrow very low recoil energy

- LDM-SM interaction cross section depends on impinging particle velocity
 - \rightarrow DD sensitivity strongly model-dependent

- Inelastic DM almost impossible to probe
 - Upscattering kinematically forbidden

Light Dark Matter	BDX	BDX-MINI	Outlook
000●	00000000000	0000	O
Light Dark Matter			

LDM at accelerators

Accelerator based experiments at the intensity frontier uniquely suited to search for LDM:

- $\rightarrow~$ High intensity \Rightarrow increased possibility of DM production
- $\rightarrow~$ Production of relativistic DM \Rightarrow testing different models

Light Dark Matter

Inelastic Light Dark Matter

Muonphilic Dark Scalar

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	●0000000000	0000	O
Beam Dump experiments			

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)¹

 χ production

- $\bullet \ e^-$ beam impinging on target
- $\bullet~\chi$ from decay of A' produced in the dump

 χ interaction

- χ propagate through shielding
- χ scattering through A' exchange

¹ Izaguirre et al., Phys. Rev. D 88, 114015 arXiv:1607.01390

BDX

 BDX-MINI 0000

BDX

JLab experiment approved by PAC46

- Run time: 2026-2029
- Fully optimized for LDM searches

JLAB offers the best condition for BDX:

- Medium high energy beam (11 GeV)
- High electron beam current (65 μ A)
- Fully parasitic wrt Hall-A physic program (Moeller)

New facility to be built in front of Hall-A beam dump:

- New underground (~ 8 m) vault
- 25 m downstream of Hall-A beam dump
- \bullet passive shielding (~ 7 m steel) to reduce beam related background

arXiv:1607.01390

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00●00000000	0000	O
BDX - Vault			

Finalized vault:

- \bullet Vault built $\sim 15~{\rm m}$ from the beam dump
- $\bullet \sim 7~{\rm m}$ Aluminum shielding
- $\bullet\,$ Detector located \sim 22 m downstream the dump

Beam Dump Experiment (BDX) Vault Concept Design

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	000●00000000	0000	O
BDX - Vault			

- Removable cover
- $\textcircled{\textbf{9}} \quad \textbf{Shielding Al block} \sim 1.5 \times 1.5 \times 7 \text{ m}$
- G First module (BGO)
- Second module (PbWO₄)
- **G** Third module (PbWO₄)
- Space for extra module (considering CCD detector)
- G Support structure
- Rails to mobilize detector

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	0000€000000	0000	O
BDX - Detector			

Detector design

Electromagnetic calorimeter:

• homogeneous 3 tons ECal

Veto system:

- hermetic multi layer veto
- 3 layer of plastic scintillator counters
- 5 cm lead vault between veto and calorimeter

Modular detector arrangement:

- ECal (BGO, PbWO₄)
- Multi-layer veto

 \rightarrow total: 3 modules (1 BGO, 2 PbWO₄)

Signal detection:

 \bullet EM shower ($\gtrsim 100$ MeV) and no corresponding activity in the active veto

arXiv:1607.01390

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000●000000	0000	O
BDX - BGO module			

BGO crystals comin grom decommissioning of BGO-OD detector

- 480 crystals (mass 1.5 tons ~ 0.5 BDX mass)
- Tapered crystals
- Two crystals placed in a parallelepipedal alveolus to achieve regular shape
- Module made of 3 (9 imes 9) alveoli matrix
- Central aveoli filled with PbWO₄ crystals (from BDX-MINI, POKER)

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000●000000	0000	O
BDX - BGO module			

BGO crystals comin grom decommissioning of BGO-OD detector

- ullet 480 crystals (mass 1.5 tons ~ 0.5 BDX mass)
- Tapered crystals
- Two crystals placed in a parallelepipedal alveolus to achieve regular shape
- Module made of 3 (9×9) alveoli matrix
- Central aveoli filled with PbWO₄ crystals (from BDX-MINI, POKER)

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	000000●00000	0000	O
BDX - PbWO modules			

Subsequent modules commissioned at later times

- \bullet First module made with $\sim 1200 \mbox{ PbWO}_4$ crystals from PRad HyCal
- ullet Second module made with \sim 800 PbWO_4 spare crystals from PANDA

Total mass with PbWO_4 modules \sim BDX CsI proposed mass

BDX - CCD

Possibility for spare module: build a low-threshold detector (CCD)

Skipper CCD: low (eV) threshold detector Exploits low energy DM interaction

- Expected clear signature from DM interaction
- Very low background (SM signal strongly different)

 $\sim 30~{\rm CCDs}$ could reproduce BDX results with a few grams detector

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000000●000	0000	O
BDX - Reach			

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	000000000●00	0000	O
BDX - Reach first module			

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	000000000000	0000	O
BDX - Status and perspective			

- $\rightarrow~$ 2014 BDX Letter of Intent
- ightarrow 2015 BDX Proto I: study of cosmic background
- ightarrow 2017 BDX Hodo: study of beam-related background
- ightarrow 2018 BDX approved at PAC46 with the highest scientific rating
- $\rightarrow~2021$ BDX-Mini: test of BDX technology
- \rightarrow NOW BDX Proto II: veto optimization
- \rightarrow Fall 2025 BGO-OD decommissioning
- $\rightarrow\,$ Mid 2026 BDX Hall construction
- $\rightarrow\,$ End 2026 BDX first module commissioning
- $\rightarrow~$ End 2026 Moeller: BDX running parassitically
- ightarrow ~2027 second and third module commissioning

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	000000000●	0000	O
BDX - Proto			

Currently working on the construction of a small scale prototype to test BDX veto

- Multi layer veto with plastic scintillator (EJ 200) read with WLS fibers and SiPM
- Crystals inside to mimic calorimeter (BGO, PbWO₄, Csl(TI))
- Goal: measure veto detection efficiency and rejection capabilities

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000000000	●000	O
BDX-MINI - Experimental Set	up		

Pilot version of BDX:

- \bullet detector placed \sim 25 m downstream of beam dump
- \bullet 2.56 GeV e^- beam
- \bullet current up to $150~\mu {\rm A}$
- $\bullet\,$ measurement alternating beam on and beam off data (beam on time $\sim\,$ 50 %)
 - $\rightarrow~$ Cosmogenic background studied with beam-off data
- \bullet accumulated $2.54\times 10^{21}~{\rm EOT}$

M. Battaglieri et al., Eur.Phys.J.C 81 (2021) 2, 164

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000000000	O●OO	O
BDX-MINI - Detector			

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals (4×10^{-3} m³ active volume)
- SiPM readout

Light Dark Matter 0000	BDX 00000000000	BDX-MINI ⊙●⊙⊙	Outlook O
BDX-MINI - Detector			

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals (4×10^{-3} m³ active volume)
- SiPM readout

Veto system

- Active veto:
- Octagonal (IV) plastic scintillator
- Cylindrical (OV) plastic scintilaltor
- Passive tungsten shielding

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000000000	oo●o	O
BDX-MINI - Results			

BDX-MINI analysis fully optimized for DM searches

- Cosmic background studied using beam-off data
- Signal cut optimized using beam-off data and signal MC simulation

Experimental results

Yields (for
$$N_{EOT} = 2.54 \cdot 10^{21}$$

•
$$N_{on} = 3623$$

•
$$N_{off} = 3822$$
 ($\tau = 1.054$)

No excess is observed

- $\rightarrow~$ evaluated 90% exclusion limit in the LDM parameter space
- \rightarrow results comparable with flagship experiments

M. Battaglieri et al., Phys.Rev.D 106 (2022) 7, 072011

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000000000	000●	O
BDX-MINI - AI optimization			

BDX-MINI impressive results due to analysis performed:

 $\rightarrow~$ signal cuts chosen to maximize signal-to-noise ratio

BDX-MINI selection cut: anti-coincidence with veto and $E_{tot} > 40$ MeV

 $\rightarrow~$ can AI provide better background rejection? $\Rightarrow~$ BDT

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	00000000000	000●	O
BDX-MINI - AI optimization			

BDX-MINI impressive results due to analysis performed:

 $\rightarrow~$ signal cuts chosen to maximize signal-to-noise ratio

BDX-MINI selection cut: anti-coincidence with veto and $E_{tot} > 40$ MeV

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	0000000000	000●	O
BDX-MINI - AI optimization			

BDX-MINI impressive results due to analysis performed:

 $\rightarrow~$ signal cuts chosen to maximize signal-to-noise ratio

BDX-MINI selection cut: anti-coincidence with veto and $E_{tot} > 40$ MeV

 $\rightarrow~$ can AI provide better background rejection? $\Rightarrow~$ BDT

BDX-MINI reach

Expected significant improvement in BDX-MINI reach

• Significant improvement at low DM masses

AI based rejection algorithms can be used for BDX for better background rejection

Light Dark Matter	BDX	BDX-MINI	Outlook
0000	0000000000	0000	•
Outlook			

- Dark matter in the MeV-to-GeV range is largely unexplored
- BDX: search for Dark Sector particles in the MeV-GeV mass range
 - Technique viable to probe different DM candidates
 - JLab provides unique opportunities to probe different models
 - BDX ready to be commissioned
 - BDX vault excavation beginning in the next months
 - BDX detector commissioning starting by the end of the year
 - BDX start taking data in 2027 (with Moeller)

• BDX-MINI: pilot version of BDX

- First modern beam dump experiment searching for Light Dark Matter
- Detector optimized for LDM searches
- Analysis aimed to LDM detection
- Results can be improved with Al-based algorithms
- Beam dump experiment with e beam highly sensitive to Light Dark Matter in the MeV-GeV range
 - \rightarrow Sensitivity to large variety of models
 - \rightarrow BDX-MINI remarkable results demonstrate that BDX is a mature, ready-to-run experiment (after the construction of a new underground experimental hall)

Backup slides

Dark Sector may be composed of two states with different mass

ightarrow Stable low mass state χ_1 and unstable high mass state χ_2

Same parameter $y\equiv \frac{g_D^2\epsilon^2e^2}{4\pi}\left(\frac{m_\chi}{m_{A'}}\right)^4\sim \langle\sigma v\rangle_{relic}m_\chi^2$ can be used to probe this model

M. Battaglieri et al., arXiv:1910.03532

Light Dark Matter - Muonphilic Dark Scalar

Dark Sector could explain SM anomalies, for example muon $(g-2)_{\mu}$ anomaly

 $\rightarrow~$ Simplest possibility: Dark Scalar coupled only to muons

Model parameters:

Backup

- Dark Scalar mass m_S
- DS-muon coupling g_{μ}

C. Cesarotti et al., Phys.Rev.D 110 (2024) 5, 055032

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

 $\chi_{1,2}$ production

- $\bullet \ e^-$ beam impinging on target
- $\chi_1\chi_2$ from decay of A' produced in the dump

 $\chi_{1,2}$ interaction

- χ_1 scattering through A' exchange
- χ_2 decay in χ_1 and e^+e^-

M. Battaglieri et al., arXiv:1910.03532

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

 $\chi_{1,2}$ production

- $\bullet \ e^-$ beam impinging on target
- $\chi_1\chi_2$ from decay of A' produced in the dump

 $\chi_{1,2}$ interaction

- χ_1 scattering through A' exchange
- χ_2 decay in χ_1 and e^+e^-

M. Battaglieri et al., arXiv:1910.03532

Backup

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)²

DS production

- \bullet Secondary μ cross different materials
- \bullet DS production from μ scattering

DS decay

- DS propagate over large distance
- $\bullet~{\rm DS}$ decay identified as two high energy $\gamma {\rm s}$

² Phys.Rev.D 110 (2024) 5, 055032

L. Marsicano et al., Phys.Rev.D 98 (2018) 11, 115022

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022