Ion Beams and Sources at INFN-LNL

A. Facco, head
F. Scarpa, A. Galatà, D. Martini, E. Sattin
Arguments

• Negative Injector
• Negative Ion Sources
• Negative Beams
• Negative Ion Source Test Bench
• Positive Injector and Source
• Positive Beams
The Negative Injector is used to produce ion beams suitable to be injected into the electrostatic Tandem Accelerator and then used for experiments in nuclear physics.

Part of the Injector is placed over an insulated platform brought at very high voltage, located inside a closed metal cabinet in order to:

- Give protection against high voltage
- Have the possibility to reduce the air humidity

The working voltage at present is 140 kV.
Negative Injector

External view of the Negative Injector
The main components of the Injector placed over the platform are the followings:

- The negative sputtering Ion Source.
- The electrostatic Einzel lens.
- The 90° double focusing analysis dipole magnet, R=14”, max field 1.1 T.
- The accelerating tube, 23 electrodes 1” spaced with its resistive voltage divider.
The main components of the Injector placed outside the cabinet are the followings:

• Electrostatic vertical and horizontal steerers.
• The Matching Lens, electrostatic quadrupol triplet.
• The LE travelling wave Chopper working at 2.5 MHz.
• The vertical and horizontal slits.
• The LE double drift, double harmonic Buncher working at 5 and 10 MHz.
• The LE Faraday Cup.
Negative Injector

Schematic view
Negative Injector

Internal view of the Negative Injector
Negative Injector

Ancillary systems

• Vacuum: 1 turbo pump system 1000 l/s before the dipole magnet and 1 turbo pump system 450 l/s after the dipole magnet.
• Vacuum measurement and valve control.
• Gas spray system: choice among 8 different gases.
• Cooling water system: deionized water 1000 l/h flow.
• High and low voltage power supplies for the ion source, lenses and magnet located in 2 racks, one of them electrically insulated located inside the cabinet, other racks outside at ground potential.
• Electrical Power: Choice between Motor-Generator or insulation transformer.
• High voltage for preaccelerating tube: 200 kV 1 mA DC high stability power supply located outside the cabinet.
Negative Injector

Data acquisition system

During last year a new data acquisition system for the negative injector has been built and put in operation. The purpose is to replace the old hand-writing parameter recording method and so to have reliable and complete data recording sets displayed also in graphs and charts on the computer screen in order to be able to understand better the behavior and problems that may occur in the injector.

It is built using 3 hardware controllers from National Instruments, one for each potential level, connected to a personal computer via Ethernet connection, programmed using the software LabView.
Negative Injector

Data acquisition system, block diagram
Negative Injector

Data acquisition system, software
Negative Injector

Data acquisition system, hardware

cRio1

FieldPoint

Switch

cRio2
Negative Injector

Negative Injector working time

[Bar chart showing the working time for each year from 1989 to 2011. The x-axis represents the years, and the y-axis represents the working hours. The chart includes a maximum limit line.]
Ion Source Test Bench

LNL 1 - 5 October 2012

SNEAP 2012

Fabio Scarpa
An Ion Source Test Bench has been built in 1988, it is located into the Source Laboratory. Its functions are the followings:

- Testings of new ion sources
- Developing of new beams out of line
- Possibility to perform experiments at very low energy

Its components are the same as the ones in the first part of our Injector, except the preacceleration. It was very useful for our activity.
The negative ion sources now present in the LNL are the following types:

- Hiconex 834
- GIC 860A
- GIC 860C
- NEC SNICS II

They are all Cesium Sputtering types
Negative Ion Sources

Hiconex 834

It is the older ion source, it was widely used until 1990 then it was replaced by the 860 types.
It has a target container for 12 targets having the possibility to change target during the running, but the target container replacing implies the switch off of the source and the vacuum breakage.
The beam current is relatively low.
Negative Ion Sources

GIC 834
Negative Ion Sources

Targets for Hiconex 834

The first is used for solid materials, like C, Ni, Cu, ecc..
The second one is used for materials in form of powder pressed inside the hole.
Negative Ion Sources

GIC 860A

It was used for several years just after the 834.
It has an helical ionizer.
It has one target only, but the target replacement is very fast and doesn’t involve the vacuum breakage.
The beam current is almost one order of magnitude higher than the previous source.
It is lighter and smaller than the 834.
The operation is a little bit easier having less controls.
Negative Ion Sources

GIC 860A
Negative Ion Sources

GIC 860C

It is the only source used at present. We have 2 items, one is in use while the other is on maintenance.
It is similar to the 860A type except the ionizer that in this case has a spherical shape. For this reason the ion beam has a high central brightness and can be injected into the Tandem accelerator with minimal loading and loss.
The beam intensity is almost the same as the 860A type.
The operation is easy.
Negative Ion Sources

GIC 860C
Negative Ion Sources

Targets for GIC 860A and 860C

Targets without gas spray

Targets for gas spray

Targets for solid material

Targets for sample insert
Negative Ion Sources

GIC 860C, target holders

Without gas spray

With gas spray
Negative Ion Sources

SNICS II

It is similar to the 860 family, and it was used in the past alternating with the 860 types. The ionizer has a conical shape and has a little bit larger dimensions than the 860 types. The Ionizer power is about the double with respect to the 860, and the external walls aren’t cooled. This makes the internal temperature higher so that some target materials with relatively high vapor pressure, like Ca and Mg, show higher consumption rate due to sublimation, and sometime can’t be used, but for the other the efficiency is good.

The targets are similar to the ones for the 860, they have only a little bit different dimensions
Negative Ion Sources

SNICS II
An updated list of all available beams at the LNL Tandem accelerator can be found in the web site of our Laboratory. It includes 82 isotopic species routinely produced. Some of these require rare isotopic material and must be provided by the users. Some elements have a poor electron affinity so don’t form negative ions, in this case a cluster must be produced. The second column of the list shows the form of this cluster.
The quoted intensity should be intended as an average value that can be reliably maintained during a long run without making unreasonably short the Tandem stripper foils lifetime.
# Negative Ion Beams

## Requirements for rare isotope materials

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Average beam time per target</th>
<th>Required amount per target</th>
<th>Required enrichment (minimum)</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{17}\text{O}$</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>Gas, please contact the staff</td>
</tr>
<tr>
<td>$^{26}\text{Mg}$</td>
<td>4</td>
<td>40</td>
<td>97</td>
<td>Powder</td>
</tr>
<tr>
<td>$^{33}\text{S}$</td>
<td>7</td>
<td>20</td>
<td>50</td>
<td>Powder</td>
</tr>
<tr>
<td>$^{36}\text{S}$</td>
<td>7</td>
<td>20</td>
<td>69</td>
<td>Powder</td>
</tr>
<tr>
<td>$^{42}\text{Ca}^{* *}$</td>
<td>7</td>
<td>25</td>
<td>97</td>
<td>Metal cylinder</td>
</tr>
<tr>
<td>$^{48}\text{Ca}^{* *}$</td>
<td>7</td>
<td>25</td>
<td>97</td>
<td>Metal cylinder</td>
</tr>
<tr>
<td>$^{50}\text{Cr}$</td>
<td>3</td>
<td>70</td>
<td>96</td>
<td>Powder</td>
</tr>
<tr>
<td>$^{54}\text{Fe}$</td>
<td>2.3</td>
<td>70</td>
<td>80</td>
<td>Metal cylinder</td>
</tr>
<tr>
<td>$^{64}\text{Ni}$</td>
<td>7</td>
<td>80</td>
<td>50</td>
<td>Powder</td>
</tr>
<tr>
<td>$^{74}\text{Se}$</td>
<td>7</td>
<td>100</td>
<td>30</td>
<td>CdSe Powder</td>
</tr>
<tr>
<td>$^{96}\text{Zr}$</td>
<td>7</td>
<td>80</td>
<td>60</td>
<td>ZrO Powder</td>
</tr>
</tbody>
</table>

** The $^{42}\text{Ca}$ and $^{48}\text{Ca}$ material must be delivered inserted in the proper support (available at Servizio Sorgenti e Iniettori) with an axial hole with diameter between 0.5 mm and 0.8 mm to allow for Ammonia gas flow.
Calcium is very difficult to produce as negative beam for the following reasons:

- It has a poor electron affinity, so a cluster must be produced.
- The usable materials are very sensitive to Oxygen and moisture so they are easy to alterate resulting in very low beam production efficiency. Care must be taken in storing these materials.
- The ion source may be critical to operate, it may go sometimes in uncontrollable situation.
Negative Ion Beams

Ca beams, production methods

We have used 2 methods to produce negative Ca beams:

• Using CaH2 compound.
  • Advantages:
    • is easier, it hasn’t gas spray
    • the material can withstand to relatively high temperature
    • the production efficiency is good
  • Disadvantages
    • it is very sensitive to Oxygen and humidity so it is difficult to store
    • it is less suitable for rare isotope.

• Using metallic Ca plus ammonia spray.
  • Advantages
    • the material is less sensitive to Oxygen and humidity
    • the production efficiency is good as well
    • it is more suitable for rare isotope
  • Disadvantages
    • It may be a little bit more complicated
POSITIVE ION SOURCE: ECRIS

PLASMA CHAMBER

INJECTION: Microwave @ 14÷28 GHz gas and oven

ION EXTRACTION

Electromagnetic coils

MAGNETIC SYSTEM: Coils (axial field), Multipole (radial field) = B-Minimum Configuration

CHARACTERISTICS

• Reliability
• Reproducibility
• Good Beam Quality
• High Currents of Medium-High Charge States
• DC and Pulsed
**ECRIS @ LNL: LEGIS**
*(LEGnaro ecrIS)*

- Simple Design
- Low Power Consumption (full permanent magnet)
- Good Performances

**SUPERNANOGAN FROM PANTECHNIK**

**HV PLATFORM**
- Square 4.5x4.5 m²
- Maximum Voltage: 350kV
- Operative Voltage: ~200kV
- Transformer: max power 135KVA up to 400kV

$\beta(PIAVE) = 0.0089$
ION BEAMS FROM LEGIS

PRODUCED FROM:

• GAS

• METALLIC VAPOURS

<table>
<thead>
<tr>
<th>Beam</th>
<th>A</th>
<th>Q</th>
<th>I[pnA]</th>
<th>Enriched isotope?</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>16</td>
<td>7</td>
<td>&gt;280</td>
<td>No</td>
</tr>
<tr>
<td>O</td>
<td>17,18</td>
<td>7</td>
<td>&gt;280</td>
<td>Si</td>
</tr>
<tr>
<td>Ne</td>
<td>20,22</td>
<td>4</td>
<td>&gt;1250</td>
<td>No</td>
</tr>
<tr>
<td>Ne</td>
<td>20,22</td>
<td>5</td>
<td>&gt;1000</td>
<td>No</td>
</tr>
<tr>
<td>Ar</td>
<td>36,38</td>
<td>9</td>
<td>&gt;220</td>
<td>Si</td>
</tr>
<tr>
<td>Ar</td>
<td>40</td>
<td>9</td>
<td>&gt;220</td>
<td>No</td>
</tr>
<tr>
<td>Zn</td>
<td>All, 66</td>
<td>15</td>
<td>400</td>
<td>Si</td>
</tr>
<tr>
<td>Zn</td>
<td>66</td>
<td>15</td>
<td>117</td>
<td>No</td>
</tr>
<tr>
<td>Zn</td>
<td>All</td>
<td>14</td>
<td>710</td>
<td>Si</td>
</tr>
<tr>
<td>Zn</td>
<td>66</td>
<td>17</td>
<td>200</td>
<td>No</td>
</tr>
<tr>
<td>Zn</td>
<td>All</td>
<td>17</td>
<td>235</td>
<td>No</td>
</tr>
<tr>
<td>Zn</td>
<td>66</td>
<td>17</td>
<td>117</td>
<td>No</td>
</tr>
<tr>
<td>Kr</td>
<td>All</td>
<td>14</td>
<td>330</td>
<td>No</td>
</tr>
<tr>
<td>Kr</td>
<td>All</td>
<td>15</td>
<td>90</td>
<td>No</td>
</tr>
<tr>
<td>Sn</td>
<td>All</td>
<td>21</td>
<td>150</td>
<td>No</td>
</tr>
<tr>
<td>Xe</td>
<td>All</td>
<td>26</td>
<td>74</td>
<td>No</td>
</tr>
<tr>
<td>Xe</td>
<td>All</td>
<td>26</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>Sm</td>
<td>All</td>
<td>26</td>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>Au</td>
<td>197</td>
<td>30</td>
<td>65</td>
<td>No</td>
</tr>
</tbody>
</table>
**Positive Ion Beams**

<table>
<thead>
<tr>
<th>Beam</th>
<th>Z</th>
<th>A</th>
<th>Charge State</th>
<th>Beam Current</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6</td>
<td>12</td>
<td>+4</td>
<td>4000 [nA] 1000 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>13</td>
<td>+4</td>
<td>4000 [nA] 1000 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>N</td>
<td>7</td>
<td>14</td>
<td>+4</td>
<td>4000 [nA] 1000 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>7</td>
<td>15</td>
<td>+3</td>
<td>3000 [nA] 1000 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>16</td>
<td>+7</td>
<td>&gt;2000 [nA] &gt;280 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>17, 18</td>
<td>+7</td>
<td>&gt;2000 [nA] &gt;280 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Ne</td>
<td>10</td>
<td>20, 22</td>
<td>+4</td>
<td>&gt;5000 [nA] &gt;1250 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Ne</td>
<td>10</td>
<td>20, 22</td>
<td>+5</td>
<td>&gt;5000 [nA] &gt;1000 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>24</td>
<td>+7</td>
<td>&gt;400 [nA] &gt;55 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>25</td>
<td>+7</td>
<td>&gt;400 [nA] &gt;55 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>26</td>
<td>+7</td>
<td>&gt;400 [nA] &gt;55 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Ar</td>
<td>18</td>
<td>36, 38</td>
<td>+9</td>
<td>&gt;2000 [nA] &gt;220 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Ar</td>
<td>18</td>
<td>40</td>
<td>+9</td>
<td>&gt;2000 [nA] &gt;220 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>64</td>
<td>+11</td>
<td>3000 [nA] 272 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>64</td>
<td>+15</td>
<td>6000 [nA] 400 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>64</td>
<td>+17</td>
<td>4000 [nA] 235 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>66</td>
<td>+15</td>
<td>3000 [nA] 200 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>66</td>
<td>+17</td>
<td>6000 [nA] 400 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>66</td>
<td>+17</td>
<td>4000 [nA] 235 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>68</td>
<td>+13</td>
<td>2000 [nA] 154 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>68</td>
<td>+15</td>
<td>4000 [nA] 235 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>68</td>
<td>+17</td>
<td>4000 [nA] 235 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Kr</td>
<td>36</td>
<td>All</td>
<td>+14</td>
<td>10000 [nA] 710 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Kr</td>
<td>36</td>
<td>All</td>
<td>+15</td>
<td>5000 [nA] 330 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Nb</td>
<td>41</td>
<td>93</td>
<td>+16</td>
<td>&gt;1600 [nA] &gt;100 [pA]</td>
<td>-</td>
</tr>
<tr>
<td>Sn</td>
<td>50</td>
<td>All</td>
<td>+21</td>
<td>2000 [nA] 90 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Xe</td>
<td>54</td>
<td>All</td>
<td>+26</td>
<td>4000 [nA] 150 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Xe</td>
<td>54</td>
<td>All</td>
<td>+27</td>
<td>2000 [nA] 74 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Sm</td>
<td>62</td>
<td>All</td>
<td>+26</td>
<td>2600 [nA] 100 [pA]</td>
<td>The user must provide the enriched isotope (*)</td>
</tr>
<tr>
<td>Au</td>
<td>79</td>
<td>197</td>
<td>+30</td>
<td>2000 [nA] 65 [pA]</td>
<td>The user must provide the material (*)</td>
</tr>
</tbody>
</table>

The reported beam current is referred to the beam extracted from the ion source and injected in the PIAVE Injector. The quoted intensity should be intended as an average value that can be reasonably maintained during a long run.
Positive Ion Beams

ECR Control System - Hardware
Positive Ion Beams

ECR Control System - Software

The software has been completely re-written using still LabView
Conclusions

Negative Injector
• 82 beams are available until now, it is possible to increase this number making a request to the staff in order to start a new development

Positive Injector
• 13 beams are available until now, other are under development and will be ready soon.