REX-ISOLDE: the radioactive ion beam post-accelerator at CERN

- REX and ISOLDE
- Operational experience Beam purification techniques
- HIE-ISOLDE and projects

D. VOULOT, CERN

ISOLDE at CERN

Rare isotopes production

ISOLDE layout

ISOLDE target-ion source

T = 2000 °C, HT \leq 60 kV Water-cooled flange and connectors

Target-ions source: many possible combinations

• Different materials

Need high density for production

Large surface for effusion

- -> powder, foils, liquid metal
- -> Pb, UC, Ta, Oxydes, Carbides...
- Different transfer lines Temperature Chemical properties
- Different ion sources Surface

Plasma

RILIS

* Custom made targets* About 30 units per year

The Resonance Ionization Laser Ion Source (RILIS)

Courtesy RILIS team

GPS

HRS

High resolution separator

- * Two magnets 90 and 60 deg
- * m/ Δ m = 5000 (aim was 30000)
- * Can be used for isotopic separation
- * RFQ- cooler buncher

Penning trap basics

Trapping Electrodes

Courtesy F. Wenander BE/ABP

Present performance

* REX low energy= 2-16 %

* Depends on: mass, A/q, experience

* Linac transmission x 0.6-0.9

* A<20 ions still difficult

* Heavy ions low efficiency: charge exchange? heating losses? *under investigation* broader CSD?

Courtesy F. Wenander BE/ABP

REX linac

A/q

Present experimental program at REX-ISOLDE

Focus of experimental program at REX-ISOLDE:

Coulomb excitation few-nucleon transfer reaction studies fusion evaporation studies light particle elastic scattering

using radioactive beams Z=3 to 88, up to 3 MeV/u

Setup for scattering experiments of light nuclei, e.g. ¹¹Be T-REX silicon barrel detector with Miniball germanium array for fewnucleon transfer reaction experiments

Miniball

Low-multiplicity Ge array + Si pixel particle detectors for Doppler correction

2nd beam line

Mobile experiments, e.g. scattering chamber

β-NMR experiment Test to produce polarized beams using tilted foils method

REX physics reference: P Van Duppen and K. Riisager, J. Phys. G: Nucl. Part. Phys. 38 024005 (2011)

Miniball reference: 'The Miniball at REX-ISOLDE', J. Van de Walle., EPJ to be published

Courtesy F. Wenander BE/ABP

⁶He 8,9,11Li ^{10,11,12}Be 10C 17F 21,24,25,26,27,28,29,³⁰Na 28,29,30,31,32Mg 44 Ar 61,62,63Mn ^{61,62}Fe 66,68Ni 67,68,69,70,71,73Cu 72,74,76,78,807n ⁷⁰Se 72,88,92,94,96Kr 93,95,97,99_{Ph} 96,98Sr 100,102,104,122,123,124,126,128Cd ¹⁰⁸Tn 106,107,108,109,110Sn 138,140,142,144Xe ^{140,142,148}Ba ¹⁴⁰Nd 148Pm 140,142,153Sm ¹⁵⁶Eu 182,184,186,188Ha 186,188,190,192,194,196,198Pb 196,198,200,202,206PO 202,204,208,220,221Rn ²²⁴Ra

REX beam collection 2001-2012

>100 radioactive isotopes of 31 elements

A selection of stable elements charge bred

ISOLDE Statistics 2011

ISOLDE Shifts (8h):

Scheduled: 471.5

Delivered: 329.5 (+134 for machine development and test) **REX-ISOLDE**: 147 (45%)

Category	Percentage
Nuclear structure using reactions	28%
Nuclear structure from ground-state properties and beta-decay	22%
Nuclear astrophysics	1%
Fundamental interactions	3%
Solid-state physics	12%
Biophysics and medicine	4%
total INTC and LOI RIB shifts	71%
Target and ion source development and Coordinator's reserve	29%

Use of pilot beams

- Some/most radioactive beams are too low to see on conventional beam diagnostics (FC and profilers): few pps to few pA
- Use stable beams to set-up the charge breeder and linac
 - Need same element (or similar) and similar mass for the EBIS

e.g. Use 238U for Ra beams, stable Cu (mass marker) for Cu isotopes Sometime use several pilot beams

- Need close-by A/q for the linac
- Use linear scaling of the linac to go from pilot to radioactive beam

Only works well for small A/q change

Beam cleaning with REX

• ISOLDE

- isobars/molecules
- stable or radiogenic
- EBIS rest gas
 - Ne (REXTRAP buffer gas), C, N,
 O, Ar (leaks), La, B (electron gun), Al, Zr, Ti (NEGs, vacuum chamber)...
 - But EBIS = very low background <1e-10 mb

* Large palette of cleaning tools within ISOLDE: RILIS, HRS, chemical selection, molecular beams...
* REX versatility offers many possibilities

Proper choice of charge state, some examples:

• 80Zn

- Ar and Ne on even charge states => q = 2n + 1
- Need A/q between 2 and 4.5 for the linac => q > 17
- Low charge states = higher efficiency and higher efficiency
- 12Be 23.6 ms half-life
 - -> need short breeding time to minimise decay losses
 - For Ttrap=31 ms and Tbreed=28.7 ms the hold-up time is approximately 31/2+28.7=44 ms => transmission = 28%

For this period and breeding time we have 9.3% for stable beam => 2.6% transmission (incl decay losses)

For Ttrap=21 ms and Tbreed=18.7 ms the hold-up time is approximately 21/2+18.7=29 ms => transmission = 43%
 For this period and breeding time we have 6.1% for stable beam => 2.6% transmission (incl decay losses)

Run at the shorter period time to reduce the instantaneous rate at the experiment

Closed-shell breeding

Breeding efficiency is enhanced for closed-shell e.g. 123Cd30+ (Ar-like)

Stripping foils

6

(MeV/u)

 10^{-1}

Shima et al, Atomic data and nuclear data tables, 51, 173-174 (1992)

Е

10

- state distribution)
- Energy straggling significant at low energy -> need to retune the optics

Double stripping

• ⁸Li/¹⁶O ratio increased by a factor 13

• Beam intensity decreased by a factor 3 -> can only be used in case of sufficiently intense beams

Undesired for: ${}^{8o}Zn (t_{1/2}=537 \text{ ms})$ - also got ${}^{8o}Ga (T_{trap}=80 \text{ ms}, T_{breed}=78 \text{ ms})$

The idea: Let easily produced elements decay in REX low-energy part prior to acceleration to provide post-accelerated beams of difficultly produced elements

previously used at ISOLTRAP; A. Herlert et al., New J. Phys. 7 (2005) 44

Tested first time at REX-ISOLDE with ⁶¹Mn (T_{1/2}=675 ms; 1.7x10⁶ atoms/s)

T _{trap}	T_{breed}
200-1100 MS	28 ms
300-1100 ms	298 ms

d	Result
S	no Fe detected at Miniball
ns	57(7)% Fe detected
	agrees with predictions

In-trap decay for better or for worse

Doppler corrected Coulex spectra (Miniball)

Journal A 42 (2009) 40:

- A general upgrade for ISOLDE
- High intensity (design study)
- HIE-LINAC
 - R&D activities for the linac (started in 2008)
 - Approved CERN project 2010
 - 5.5 MeV/u (stage 1) 2015 / 10 MeV/u (stage 2) 2016-2018
 - 36.5 MCHF, 50% financed through external collaboration

A superconducting linac?

- "an array of small independent resonating cavities, equipped with their own small RF amplifier "
- -> No high power amplifier (7W of RF)
- -> Very high accelerating gradient
- -> Short + independent cavities = high flexibility
- -> CW operation

SC quarter-wave cavities

Courtesy HIE-ISOLDE linac working group

TTF vs Energy

Energy (MeV/u)

TTF

Energy RANGE: STAGE 2b

Courtesy M. Fraser BE/RF

HIE-REX Cavity Prototype: Nb sputtered on Cu

HIE-ISOLDE LINAC - layout

Beyond HIE-ISOLDE

TSR @ISOLDE

- Heavy-Ion Storage Ring + HIE-ISOLDE
 - No background
 - No energy straggling
 - Cold beam/Smaller beamsize
 - Reduced dead time/CW beam
- Approved by research board May 2012
- Aiming for start-up in 2015 as an experiment, integration as CERN facility in 2018

TSR at MPIK Heidelberg

Slow extraction

- Bunched beam = high instantaneous rate -> dead time
- Good signal to noise ratio

Slow extraction, 108Sn, measured at Miniball