

- Ex. 1: implementation of geometrical volumes
- Ex. 2: generation of primary particles
- Ex. 3: implementation of a virtual division
- Ex. 4: change some physical parameters

• Ex. 1: implementation of geometrical volumes

Ex. 1a: implementation of a hollow cylinder of Pb centred at A(0, 0, 30 cm)
 Rmin = 1 cm
 Rmax = 10 cm
 I = 20 cm

Ex. 1b: creation of a water cube centred at B(0, 0, 80 cm)
 I = 40 cm

- Ex. 2: generation of primary particles along Z axis
 - Ex. 2a: generation of a proton beam @100 MeV → point-like (default)
 - Ex. 2b: like before (p @ 100 MeV) → rectangular source of side I₁=2cm e
 I₂=4cm centred on the origin (particle direction II z)
 -1 < x < 1 -2 < y < 2
 - Ex. 2c: like before (p @ 100 MeV) \rightarrow gaussian source of $\sigma_X = \sigma_Y = 2$ cm add an energetic spread of 0.5% (σ_E) (keep that in the followings exercises)

• Ex. 3: implementation of a virtual division:

Add G4ScoringManager in the main and execute: /control/execute solution_scorer.mac

- Ex. 3a: implementation of a **voxelized** division adjacent to the left side of the cube, and production of an ascii file with **energy deposited** per voxel
 - dimension of the virtual geometry: $I_x = I_v = I_z = 5$ cm
 - single voxel dimension: $d_x = d_y = d_z = 5$ mm
- Ex. 3b: implementation of a **sliced** division adjacent to the left side of the cube, and production of an ascii file with **energy deposited** per slice
 - dimension of the virtual geometry: $I_x = I_y = 5$ cm; $I_z = 40$ cm
 - single slice dimension dimension: $d_x = d_y = 5$ cm; $d_z = 0.1$ mm

Es. 4: plots and Geant4/Fluka comparisons

- Es. 4a: execute the simulations in the same conditions (as before) and changing the followings parameters:
 - protons @ 100, 250 MeV
 - C12 @ 100, 400 AMeV
- Es. 4b: in case of remaining time, calculate:
 - Total dose deposited