#### IX SEMINAR ON SOFTWARE FOR NUCLEAR, SUBNUCLEAR AND APPLIED PHISICS

Porto Conte, Alghero, Italy 28<sup>th</sup> May - 1<sup>th</sup> June 2012

# Detector description: materials and geometry





## **Part I: Materials**

#### Materials:

- The System of units & constants
- Definition of elements
- Materials and mixtures
- Some examples ...
- The NIST Data Base

## Units

- Geant4 has no default unit.
- To introduce the input data, unit **must** be "multiplied" to the number.
  - for example :

```
G4double width = 12.5 \times m;
```

G4double density =  $2.7 \times g/cm3$ ;

- Almost all commonly used units are available.
- The user can define new units.
- Refer to CLHEP: SystemOfUnits.h
- To output the data you can **divide** a variable by a unit you want to get.

```
G4cout << dE / MeV << " (MeV)" << G4endl;
```

# **System of Units**

- System of units are defined in CLHEP, based on:
  - millimetre (mm), nanosecond (ns), Mega eV (MeV), positron charge (eplus) degree Kelvin (kelvin), the amount of substance (mole), luminous intensity (candela), radian (radian), steradian (steradian)
- All other units are computed from the basic ones
- Alternative way to outpup data: Geant4 can choose the most appropriate unit to use. Just specify the *category* for the data (Length, Time, Energy, etc...):

```
G4cout << G4BestUnit(StepSize, "Length");
```

StepSize will be printed in km, m, mm Or ... fermi, depending on its actual value

# **Defining new Units**

- New units can be defined directly as constants, or (suggested way) via G4UnitDefinition
  - G4UnitDefinition ( name, symbol, category, value )
- Example (speed):
  - G4UnitDefinition ("km/hour", "km/h",

"Speed", km/3600\*s);

- The new category "Speed" will be registered in the kernel in G4UnitsTable
- To print the list of units:
  - From the code

G4UnitDefinition::PrintUnitsTable();

- At run-time, as UI command:
  - Idle> /units/list

## **Definition of materials**

- Different kinds of materials can be defined:
  - isotopes <> G4Isotope
  - elements <> G4Element
  - molecules <> G4Material
  - compounds and mixtures <> G4Material
- Attributes associated:
  - temperature, pressure, state, <u>density</u>
- **G4Isotope** and **G4Element** describe properties of the *atoms*:
  - Atomic number, number of nucleons, mass of a mole, shell energies, cross-sections per atoms, etc...
- **G4Material** describes the *macroscopic* properties of the matter:
  - temperature, pressure, state, density
  - Radiation length, absorption length, etc...
- G4Material is the only class used and visible to the toolkit: it is used by tracking, geometry and physics

#### **Elements and isotopes**

Isotopes can be assembled into elements

G4Isotope (const G4String& name,

G4int z, // atomic number G4int n, // number of nucleons G4double a); // mass of mole

• ... building elements as follows:

#### Materials of one element and molecules

• Single element material:

```
G4double z, a, density
density = 1.390*g/cm3;
a = 39.95*g/mole;
G4Material* lAr =
new G4Material("liquidArgon", z=18, a, density);
```

• A molecule is made of several elements (composition by number of atoms):

```
a = 1.01*g/mole;
G4Element* elH =
    new G4Element("Hydrogen",symbol="H",z=1.,a);
a = 16.00*g/mole;
G4Element* elO =
    new G4Element("Oxygen",symbol="O",z=8.,a);
density = 1.000*g/cm3;
G4Material* H2O =
    new G4Material("Water",density,ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```

#### **Compound and mixture**

• Mixture: composition by fraction of mass

```
a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N",z= 7.,a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen",symbol="O",z= 8.,a);
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air",density,ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);
```

Composition of compound materials

```
G4Element* elC = ...; // define "carbon" element
G4Material* SiO2 = ...; // define "quartz" material
G4Material* H2O = ...; // define "water" material
density = 0.200*g/cm3;
G4Material* Aerog = new G4Material("Aerogel",density,ncomponents=3);
Aerog->AddMaterial(SiO2,fractionmass=62.5*perCent);
Aerog->AddMaterial(H2O,fractionmass=37.4*perCent);
Aerog->AddElement (elC,fractionmass= 0.1*perCent);
```

#### Example: gas

• It may be necessary to specify temperature and pressure

```
    (dE/dx computation affected)
```

```
G4double density = 27.*mg/cm3;
G4double temperature = 325.*kelvin;
G4double pressure = 50.*atmosphere;
G4Material* CO2 = new G4Material("CarbonicGas", density,
ncomponents=2, kStateGas, temperature, pressure);
CO2->AddElement(C,natoms = 1);
CO2->AddElement(O,natoms = 2);
```

- Absolute vacuum does not exist: gas at very low density !
  - Cannot define materials composed of multiple elements through z or A, or with  $\rho{=}0$

```
G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;
G4Material* Vacuum = new G4Material("interGalactic",
atomicNumber,massOfMole, density, kStateGas,temperature, pressure);10
```

## **NIST Material Data-Base in Geant4**

- NIST database for materials is imported inside Geant4 <u>http://physics.nist.gov/PhysRefData</u>
- Additional interfaces defined
- UI commands specific for handling materials
- The best accuracy for the most relevant parameters guaranteed:
  - Density
  - Mean excitation potential
  - Chemical bounds
  - Element composition
  - Isotope composition
  - Various corrections

| Ζ  | A     | m            | error | (%)         | A <sub>eff</sub> |
|----|-------|--------------|-------|-------------|------------------|
| == | :===  | ======       | ===== | ======      | =====            |
| 14 | Si 22 | 22.03453     | (22)  |             | 28.0855(3)       |
|    | 23    | 23.02552     | (21)  |             |                  |
|    | 24    | 24.011546    | (21)  |             |                  |
|    | 25    | 25.004107    | (11)  |             |                  |
|    | 26    | 25.992330    | (3)   |             |                  |
|    | 27    | 26.98670476  | (17)  |             |                  |
|    | 28    | 27.976926532 | • •   | 92.2297 (7) |                  |
|    | 29    |              | (3)   | 4.6832 (5)  |                  |
|    | 30    |              | (5)   | 3.0872 (5)  |                  |
|    | 31    |              | (7)   |             |                  |
|    | 32    |              | (23)  |             |                  |
|    | 33    |              | (17)  |             |                  |
|    | 34    |              | (15)  |             |                  |
|    | 35    |              | (40)  |             |                  |
|    | 36    |              | (11)  |             |                  |
|    | 37    | 36.99300     | (13)  |             |                  |
|    | 38    | 37.99598     | (29)  |             |                  |
|    | 39    | 39.00230     | (43)  |             |                  |
|    | 40    |              | (54)  |             |                  |
|    | 41    | 41.01270     | (64)  |             |                  |
|    | 42    | 42.01610     | (75)  |             |                  |

- Natural isotope compositions
- More than 3000 isotope masses

## **NIST materials in Geant4**

| #### Elementary Materials from the NIST Data Base |                                                                                                                                             |                                                                                                                                                   |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Z Name ChFormula density(g/cm^3) I(eV)            |                                                                                                                                             |                                                                                                                                                   |  |  |  |  |
| ====================================              | 8.3748e-05<br>0.000166322<br>0.534<br>1.848<br>2.37<br>2<br>0.0011652<br>0.00133151<br>0.00158029<br>0.000838505<br>0.971<br>1.74<br>2.6989 | 19.2         41.8         40         63.7         76         81         82         95         115         137         149         156         166 |  |  |  |  |
| 14 G4_Si                                          | 2.33                                                                                                                                        | 173                                                                                                                                               |  |  |  |  |

• NIST Elementary materials:

• H -> Cf ( Z = 1 -> 98 )

• NIST compounds:

• e.g. "G4\_ADIPOSE\_TISSUE\_IRCP"

• HEP and Nuclear materials:

#### • e.g. Liquid Ar, PbWO

• It is possible to build mixtures of NIST and user-defined materials

| ========                                       | ===========                             |                                        | ===   |  |  |  |  |
|------------------------------------------------|-----------------------------------------|----------------------------------------|-------|--|--|--|--|
| ### Compound Materials from the NIST Data Base |                                         |                                        |       |  |  |  |  |
| N Name                                         | ======================================  | ====================================== |       |  |  |  |  |
|                                                | ======================================= |                                        | ===   |  |  |  |  |
| 13 G4 Adip                                     | ose_Tissue                              | 0.92                                   | 63.2  |  |  |  |  |
| 1                                              | 0.119477                                |                                        |       |  |  |  |  |
| 6                                              | 0.63724                                 |                                        |       |  |  |  |  |
| 7                                              | 0.00797                                 |                                        |       |  |  |  |  |
| 8                                              | 0.232333                                |                                        |       |  |  |  |  |
| 11                                             | 0.0005                                  |                                        |       |  |  |  |  |
| 12                                             | 2e-05                                   |                                        |       |  |  |  |  |
| 15                                             | 0.00016                                 |                                        |       |  |  |  |  |
| 16                                             | 0.00073                                 |                                        |       |  |  |  |  |
| 17                                             | 0.00119                                 |                                        |       |  |  |  |  |
| 19                                             | 0.00032                                 |                                        |       |  |  |  |  |
|                                                | 2e-05                                   |                                        |       |  |  |  |  |
| 26                                             | 2e-05                                   |                                        |       |  |  |  |  |
|                                                | 2e-05                                   |                                        |       |  |  |  |  |
| 4 G4_Air                                       |                                         | 0.00120479                             | 85.7  |  |  |  |  |
| 6                                              | 0.000124                                |                                        |       |  |  |  |  |
| 7                                              |                                         |                                        |       |  |  |  |  |
| 8                                              | 0.231781                                |                                        |       |  |  |  |  |
| 18                                             | 0.012827                                |                                        |       |  |  |  |  |
| 2 G4_Csl                                       |                                         | 4.51                                   | 553.1 |  |  |  |  |
| 53                                             |                                         |                                        |       |  |  |  |  |
| 55                                             | 0.52308                                 |                                        |       |  |  |  |  |

#### How to use the NIST DB

- No need to predefine elements and materials
- Retrieve materials from NIST manager:

G4NistManager\* manager = G4NistManager::Instance();

G4Material\* H2O = manager->FindOrBuildMaterial("G4 WATER");

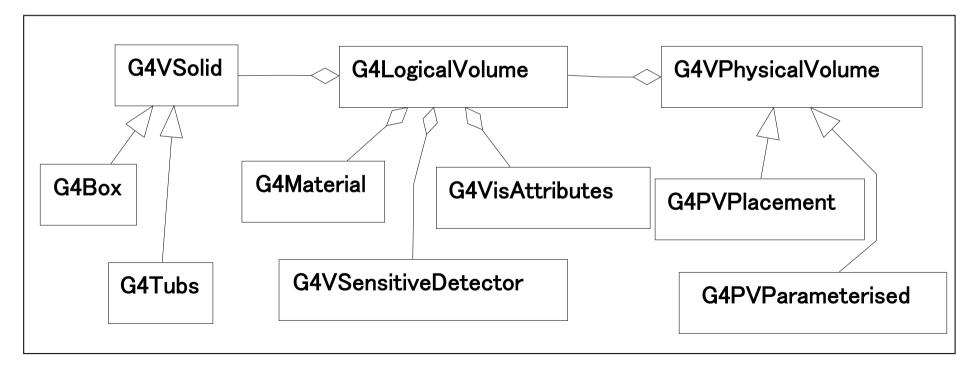
Some UI commands ...
 /material/nist/printElement <print defined elements</pre>
 /material/nist/listMaterials <print defined materials</li>

# Part II: Geometry

#### Geometry:

- Detector description: the basic
  - Detector geometry components
  - Define detector geometry
- Describing a detector
  - Solids
  - Logical volumes
  - Physical volumes
- Tools for geometry check

## **Describe your detector**


- Derive your own concrete class from G4VUserDetectorConstruction abstract base class.
- Implementing the method construct():
  - Modularize it according to each detector component or subdetector:
    - Construct all necessary materials
    - Define shapes/solids required to describe the geometry
    - Construct and place volumes of your detector geometry
    - Define sensitive detectors and identify detector volumes which to associate them
    - > Associate magnetic field to detector regions
    - > Define visualization attributes for the detector elements

#### **Detector geometry components**

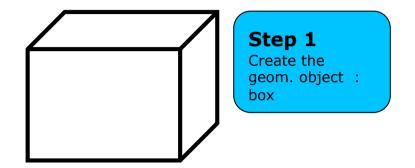
- Three conceptual layers
  - G4VSolid -- shape, size
  - G4LogicalVolume -- daughter physical volumes,

material, sensitivity, magnetic field, etc.

- G4VPhysicalVolume -- position, rotation



#### **Define detector geometry**


• Basic strategy

Solid : shape and size

**G4VSolid\*** pBoxSolid =

new G4Box("aBoxSolid",

1.\*m, 2.\*m, 3.\*m);

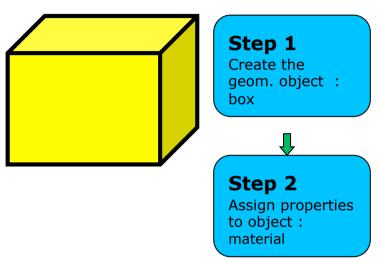


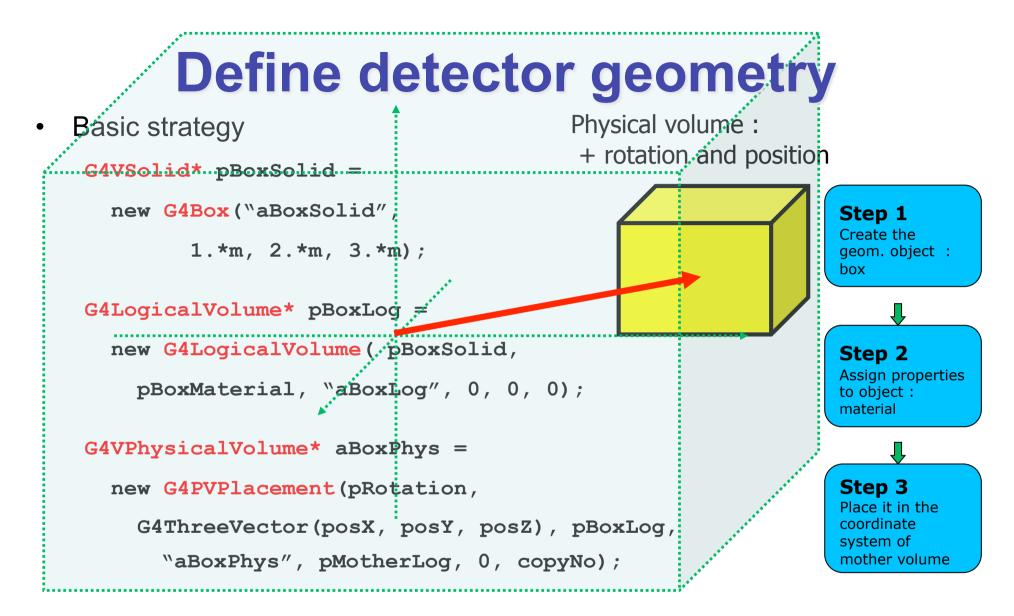
#### **Define detector geometry**

• Basic strategy

G4VSolid\* pBoxSolid =

new G4Box("aBoxSolid",


1.\*m, 2.\*m, 3.\*m);

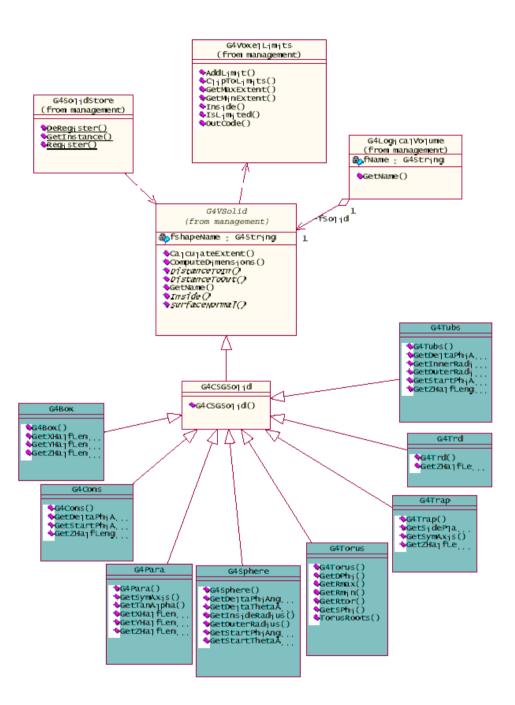

**G4LogicalVolume\*** pBoxLog =

new G4LogicalVolume( pBoxSolid,

```
pBoxMaterial, "aBoxLog", 0, 0, 0);
```

Logical volume : + material, sensitivity, etc.

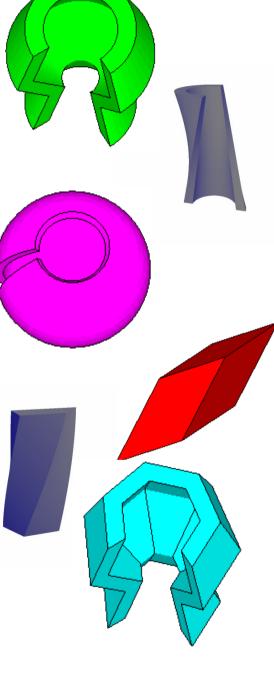





 A unique physical volume which represents the experimental area must exist and fully contains all other components

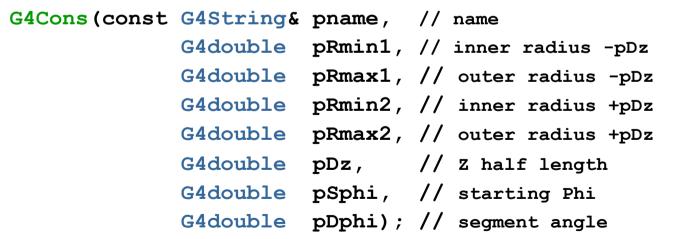
The world volume

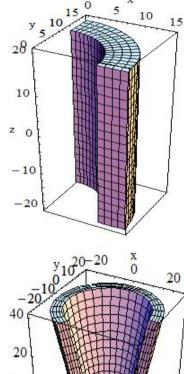
#### **G4VSolid**


- Abstract class. All solids in Geant4 derive from it
  - Defines but does not implement all functions required to:
    - compute distances to/from the shape
    - check whether a point is inside the shape
    - compute the extent of the shape
    - compute the surface normal to the shape at a given point
- Once constructed, each solid is automatically registered in a specific solid store



# Solids


Solids defined in Geant4:


- CSG (Constructed Solid Geometry) solids
  - G4Box, G4Tubs, G4Cons, G4Trd, ...
  - Analogous to simple GEANT3 CSG solids
- Specific solids (CSG like)
  - G4Polycone, G4Polyhedra, G4Hype, ..
  - G4TwistedTubs, G4TwistedTrap, ...
- BREP (Boundary REPresented) solids
  - G4BREPSolidPolycone, G4BSplineSurface, ...
  - Any order surface
- Boolean solids
  - G4UnionSolid, G4SubtractionSolid, ...

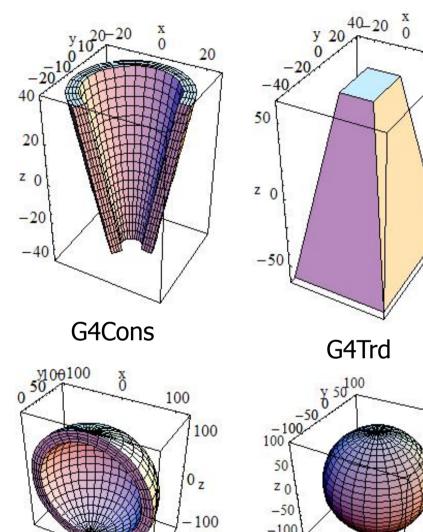


#### CSG: G4Tubs, G4Cons

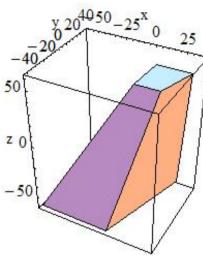
| G4Tubs (const | G4String& | pname,  | // | name          |
|---------------|-----------|---------|----|---------------|
|               | G4double  | pRmin,  | // | inner radius  |
|               | G4double  | pRmax,  | // | outer radius  |
|               | G4double  | pDz,    | // | Z half length |
|               | G4double  | pSphi,  | // | starting Phi  |
|               | G4double  | pDphi); | // | segment angle |



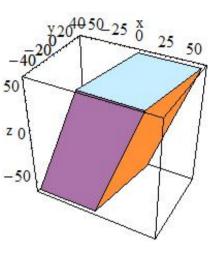



z 0

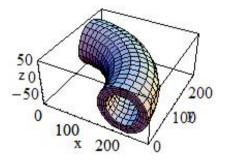
-20


-40

#### **Other CSG solids**

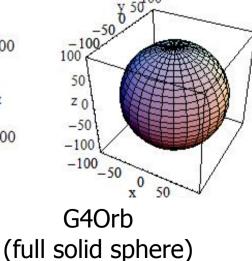

20




G4Trd ¥ 50<sup>100</sup>

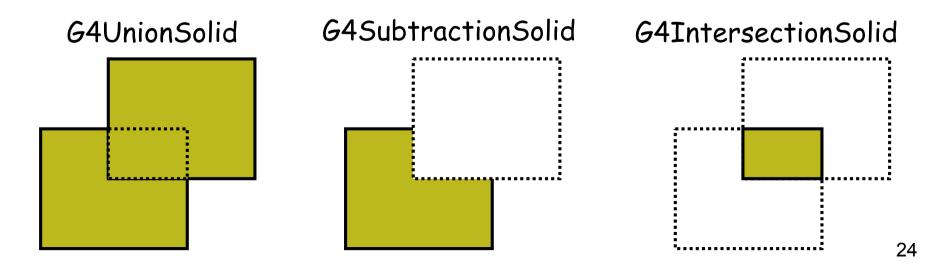


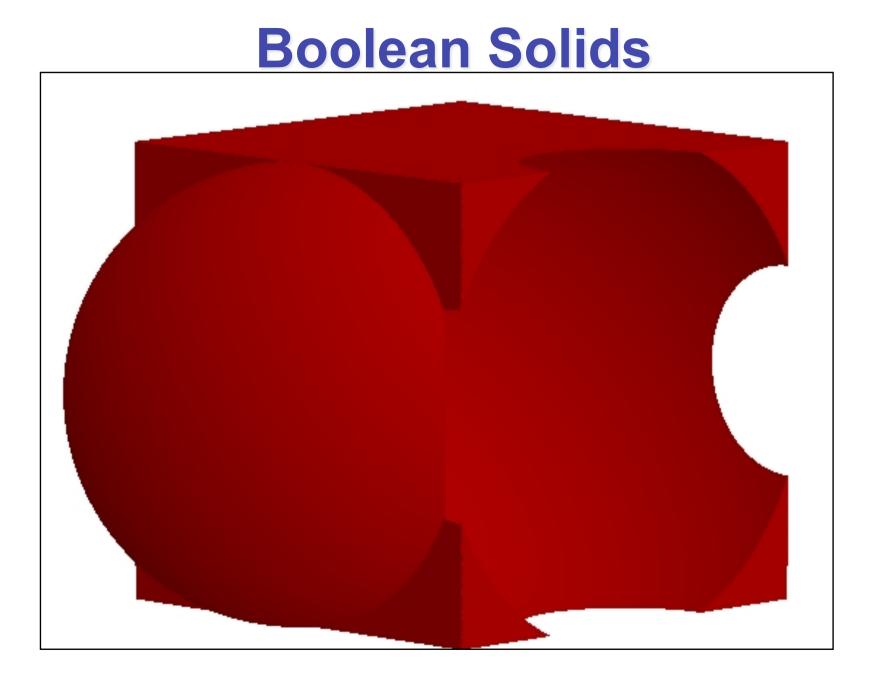
G4Trap




G4Para (parallelepiped)




G4Torus


Consult to Section 4.1.2 of Geant4 Application Developers Guide for all available shapes.



#### **Boolean Solids**

- Solids can be combined using boolean operations:
  - G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid
  - Requires: 2 solids, 1 boolean operation, and an (optional) transformation for the 2<sup>nd</sup> solid
  - 2<sup>nd</sup> solid is positioned relative to the coordinate system of the 1<sup>st</sup> solid
  - Result of boolean operation becomes a solid. Thus the third solid can be combined to the resulting solid of first operation.
- Solids to be combined can be either CSG or other Boolean solids.
- <u>Note</u>: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent CSG solids



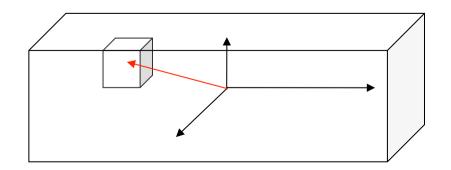


## **G4LogicalVolume**

G4LogicalVolume(G4VSolid\* pSolid, G4Material\* pMaterial,

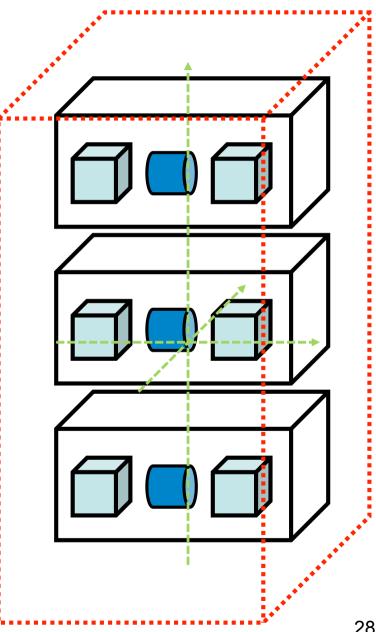
const G4String& name, G4FieldManager\* pFieldMgr=0,

G4VSensitiveDetector\* pSDetector=0,


G4UserLimits\* pULimits=0,

G4bool optimise=true);

- Contains all information of volume except position:
  - Shape and dimension (G4VSolid)
  - Material, sensitivity, visualization attributes
  - Position of daughter volumes
  - Magnetic field, User limits
  - Shower parameterisation
- Physical volumes of same type can share a logical volume.
- The pointers to solid and material must be NOT null

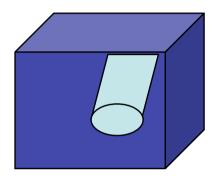

# **Geometrical hierarchy**

- Mother and daughter volumes
  - A volume is placed in its mother volume
    - Position and rotation of the daughter volume is described with respect to the local coordinate system of the mother volume
    - The origin of the mother's local coordinate system is at the center of the mother volume
    - Daughter volumes <u>cannot protrude</u> from the mother volume
    - Daughter volumes <u>cannot overlap</u>
  - The logical volume of mother knows the daughter volumes it contains
    - It is uniquely defined to be their mother volume



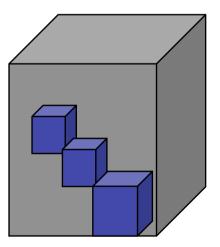
### **Geometrical hierarchy**

- One logical volume can be placed more than once. One or more volumes can be placed in a mother volume
- Note that the mother-daughter relationship is an information of G4LogicalVolume
  - If the mother volume is placed more than once, all daughters by definition appear in each placed physical volume
- The world volume must be a unique physical volume which <u>fully contains with some margin</u> all the other volumes (root volume of the hierarchy)
  - The world volume defines the global coordinate system. The origin of the global coordinate system is at the center of the world volume
  - Position of a track is given with respect to the global coordinate system




# Region

- A **region** may have its unique
  - Production thresholds (cuts)
    - If a region in the mass geometry does not have its own production thresholds, those of the default region are used (i.e., may not be those of the parent region).
  - User limits
    - Artificial limits affecting to the tracking, e.g. max step length, max number of steps, min kinetic energy left, etc.
    - You can set user limits directly to logical volume as well. If both logical volume and associated region have user limits, those of logical volume wins.
  - Fast simulation manager
  - Field manager
  - ...
- Please note :
  - World logical volume is recognized as the default region. User is not allowed to define a region to the world logical volume.


## **Physical Volumes**

• Placement: it is one positioned volume



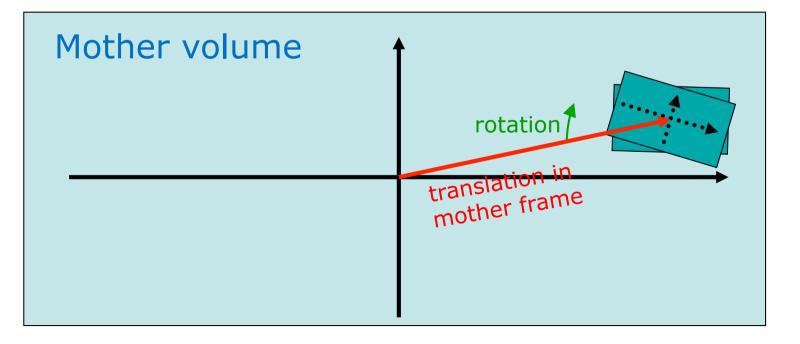
placement

- Repeated: a volume placed many times
  - can represent any number of volumes
  - reduces use of memory.
  - Replica
    - simple repetition, similar to G3 divisions
  - Parameterised



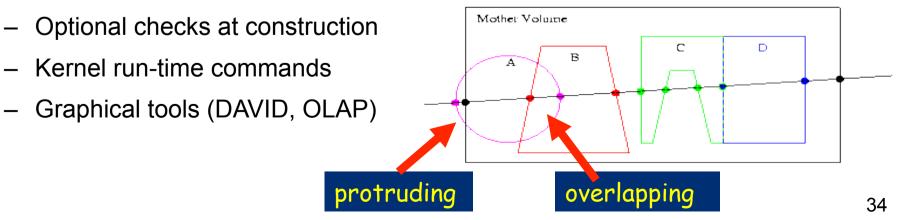
repeated

#### **G4PVPlacement**


- Single volume positioned relatively to the mother volume
  - In a frame rotated and translated relative to the coordinate system of the mother volume
- Three additional constructors:
  - A simple variation: specifying the mother volume as a pointer to its physical volume instead of its logical volume.
  - Using G4Transform3D to represent the direct rotation and translation of the solid instead of the frame (*alternative constructor*)
  - The combination of the two variants above

#### **G4PVPlacement** Rotation <u>of</u> mother frame ...

Single volume positioned relatively to the mother volume




#### **G4PVPlacement** Rotation <u>in</u> mother frame ...



# **Tools for geometry check**

- A protruding volume is a contained daughter volume which actually protrudes from its mother volume.
- Volumes are also often positioned in a same volume with the intent of not provoking intersections between themselves. When volumes in a common mother actually intersect themselves are defined as overlapping.
- Geant4 does not allow for malformed geometries, neither protruding nor overlapping.
  - The behavior of navigation is unpredictable for such cases.
- The problem of detecting overlaps between volumes is bounded by the complexity of the solid models description.
- Utilities are provided for detecting wrong positioning



# **Tools for geometry check**

 Constructors of G4PVPlacement and G4PVParameterised have an optional argument "pSurfChk".

G4PVPlacement(G4RotationMatrix\* pRot, const G4ThreeVector &tlate, G4LogicalVolume \*pDaughterLogical, const G4String &pName, G4LogicalVolume \*pMotherLogical, G4bool pMany, G4int pCopyNo, G4bool pSurfChk=false);

If this flag is true, overlap check is done at the construction:

- some number of points are randomly sampled on the surface of creating volume. *This check requires lots of CPU time, but it is worth to try at least once.* 

- Built-in run-time commands to activate verification tests for the user geometry:
  - geometry/test/run or geometry/test/grid\_test
     to start verification of geometry for overlapping regions based on a standard grid setup, limited to the first depth level
  - geometry/test/recursive\_test
    applies the grid test to all depth levels (may require lots of CPU time!)
  - geometry/test/line\_test
    to shoot a line along a specified direction and position

- ...

#### Thanks for your attention