

biofisica e biofotonica (in Bicocca)

LABS (Laboratory of Advanced BiophotonicS

Biophysics (also biological physics) is an interdisciplinary science that employs and develops theories and methods of the physical sciences for the investigation of biological systems.

Mcrobes

1µm

100µm

 $10\mu m$

Cells

(Eq. blood cells)

alla permanente!

alla risposta immunitaria..

gruppo di biofisica e biofotonica: le cose nuove..

Super-resolution photo-thermal imaging

Nanotechnology

Artificial Intelligence-based image processing

FET OPEN project: IN2SIGHT

An in-vivo bioengineered chip as a smart intravital multiphoton imaging window

SUPER-RESOLUTION FLUORESCENCE & FAR-IR IMAGING

Super-resolved thermography & STED nanoscopy

Photo-thermal far-infrared imaging:

- Heat release in the sample upon visible laser light absorption
- Detection of the emitted thermal radiation by a thermal camera (λ = 7-13 µm)

grey-body approximation & Stefan-Boltzmann's law

Time-dependent ~mm resolution limited by diffraction and heat diffusion

 \sim mm spatial resolution (Abbe's law for diffraction + heat diffusion)

< 60 µm spatial resolution

5°C

<u>ن</u>

°°C

Model-based SR Presotto L. et al., Adv. Intell. Syst., 2300510, 2023

Development of hardware and software super-resolution (SR) strategies

SUPER-RESOLUTION PHOTO-THERMAL IMAGING

— Thermal conductivity imaging

How to map temperature + thermal properties? Finite-element simulations + theoretical modelling of temperature rise-and-decay kinetics

 $\frac{k}{D}\frac{\partial T(\underline{r},t)}{\partial t} - k\nabla^2 T(\underline{r},t) = Q(\underline{r},t)$ $\begin{cases} -k\frac{\partial T(\underline{r},t)}{\partial z} \bigg|_{z=0} = -h[T(x,y,0,t) - T_m(\infty)] - \varepsilon\sigma[T^4(x,y,0,t) - T_m^4(\infty)] \\ -k\frac{\partial T(\underline{r},t)}{\partial z} \bigg|_{z=L} = h[T(x,y,L,t) - T_m(\infty)] + \varepsilon\sigma[T^4(x,y,L,t) - T_m^4(\infty)] \end{cases}$

Conservazione dei beni culturali Collab. with D. Di Martino, G. Gorini

Bouzin M. et al., Mat. Today Phys., 18, 100375, 2021

Space-resolved quantification of the melanin concentration in melanoma biopsies

Space-resolved quantification of the melanin concentration in melanoma biopsies to complement fluorescence, H&E staining and ABCDE rule

NANOPARTICLES FOR TECHNOLOGY

metal nanoparticles (gold/silver/iron)

absorption VIS-NIR scattering VIS-NIR luminescence VIS

NANOTECHNOLOGY

Photo-thermal bacteria eradication

Collaboration with Prof. A. Polissi Lab Pharmacological and Biomolecular Sciences Dept. @ UNIMI

Grisoli, P. et al. Nanomaterials 11, 6 (2021) Borzenkov, M. et al., Nanomaterials, 10,786 (2020) Borzenkov, M. et al., Bellstein J. Nanotechnol., 11,1 (2020)

Multi-photon fabrication

Collaboration with Dr. A. Zeynali University of Stuttgart

Neuron cells stimulation

Collaboration with Prof. M. Lecchi Lab Biotechnology and Biosciences Dept. @ UNIMIB

Cell-nanoparticles interaction

Collaboration with Prof. P. Bigini Mario Negri Institute for Pharmacological Research

Dynamics and transport of cargoes, receptors, proteins in crowded, heterogeneous, corralled environments

Photo-thermal therapy

"NanoThermoPatch" for medical applications M. Borzenkov, G. Chirico, M. Collini, P. Pallavicini

Patented

Photo-thermal nanomaterials for food packaging

"NanoFunPack" development of next-generation smart packaging solutions for food industry

NANOTECHNOLOGY: Photo-thermal applications

Photo-thermal bacteria eradication

Collaboration with Prof. P. Pallavicini Lab Chemistry Dept. @ Università degli Studi di Pavia

Multi-photon fabrication

T_C

 T_H

Collaboration with Dr. A. Zeynali University of Stuttgart, Germany

ARTIFICIAL INTELLIGENCE-BASED IMAGE PROCESSING: Digital pathology

Label-free tissue characterization

Multi-photon excited fluorescence, second harmonic generation (SHG) microscopy, FLIM (fluorescence lifetime) imaging

Extraction of structural, textural, functional, metabolic information to complement the color and texture analysis of standard histology images

Multi-Level Predictions/Analysis

Prediction of: staining, molecular expression and gene mutations from label-free tissue images

VIRTUAL STAINING

Prediction of: disease progression from healthy tissue (e.g. liver fibrosis)

Healthy liver Fibrosis FIBROSIS PROGRESSION

- AI-aided disease diagnosis: segmentation, feature extraction and correlation with clinical information

Collaborations:

Dr. D. Inverso – San Raffaele Hospital Prof. L. Di Tommaso – Humanitas Research Hospital Prof. G. Castellani, Dr. E. Giampieri – Università di Bologna Prof. J. Calderaro, Henri Mondor Hospital, Créteil, France.

ARTIFICIAL INTELLIGENCE-BASED IMAGE PROCESSING: Digital pathology

Label-free tissue characterization

Multi-photon excited fluorescence, second harmonic generation (SHG) microscopy, FLIM (fluorescence lifetime) imaging

L. Sironi* et al., Frontiers in Oncology, 2019 DOI: 10.3389/fonc.2019.00527 L. Sironi* et al., Scientific Reports, 2017 DOI: 10.1038/s41598-017-17726-y)

Multi-Level Predictions/Analysis

Prediction of: staining, molecular expression and gene mutations from label-free tissue images

Prediction of: disease progression from healthy tissue (e.g. liver fibrosis)

Healthy liver Fibrosis **FIBROSIS PROGRESSION**

Al-aided disease diagnosis: segmentation, feature extraction and correlation with clinical information

81% diagnostic accuracy Better results than junior pathologists

Panzeri et al., Frontiers in medicine, accepted

Autofluorescence Hematoxylin&Eosin

VIRTUAL STAINING

ARTIFICIAL INTELLIGENCE-BASED IMAGE PROCESSING: Remote Sensing

Development of a MUlti-SEnsor remote sensing approach from drone to earLY detect plant diseases: A tool for sustainable agriculture and food security (MUSELY)

PRIN 2022 PNRR

DISAT, University of Milano-Bicocca

FET OPEN project – IN2SIGHT

An in-vivo bioengineered chip as a smart intravital multiphoton imaging window for new validation protocols of biomaterials

FET OPEN project – IN2SIGHT

FET OPEN project – IN2SIGHT: **Optical set-up and image acquisition/analysis**

Imaging on stained fibroblasts through the microlenses

Label-free imaging of implanted In2Sight optical device

FET OPEN project – IN2SIGHT: **Optical set-up and image acquisition/analysis**

Imaging on stained fibroblasts through the microlenses

Label-free imaging of implanted In2Sight optical device

FET OPEN project – IN2SIGHT

ACKNOWLEDGEMENTS

A DEGLI STUDI **OFORTH** BICOCCA Biophysics @UNIMIB: <u></u>≞≞ Giuseppe Chirico Maddalena Collini Laura D'Alfonso ASPHALION Laura Sironi Luca Presotto Margaux Bouzin Mario Marini Amirbahador Zeynali Jennifer Riccio Davide Panzeri Letizia Marchesi Riccardo Bolzoni Oumayma Alhou

Collaborations:

dkfz. GERMAN CANCER RESEARCH CENTER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964481

ISIS@MACH ITALIA