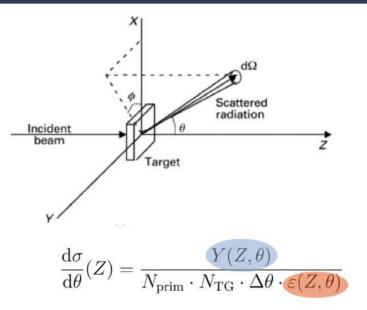


Nuclear physics for hadrontherapy

Yunsheng Dong & Ilaria Mattei INFN Milano

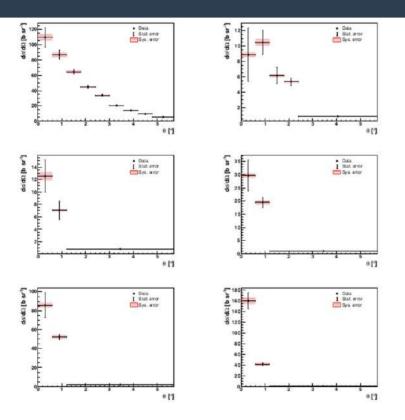

Lab2go

26/05/2025

Cross section

Angular differential and elemental fragmentation cross sections of a 400 MeV/u ¹⁶O beam on a graphite target with the FOOT experiment

R. Ridolfi^{10,11}, M. Toppi^{22,12}, A. Mengarelli¹⁰, M. Dondi^{10,11}, A. Alexandrov³, B. Alpat⁴, G. Ambrosi⁴, S. Argirò^{5,6}, M. Barbanera⁴, N. Bartosik⁶, G. Battistoni⁷, M.G. Bisogni^{8,9}, V. Boccia^{2,3}, F. Cavanna⁶, P. Cerello⁶ E. Ciarrocchi^{8,9}, A. De Gregorio^{13,12}, G. De Lellis^{2,3}, A. Di Crescenzo^{2,3}, B. Di Ruzza¹⁴, M. Donetti^{15,6}, Y. Dong⁷, M. Durante^{2,17}, R. Faccini^{13,12}, V. Ferrero⁶, C. Finck¹⁶, E. Fiorina⁶, M. Francesconj³, M. Franchini^{10,11}, G. Franciosini^{22,12}, G. Galati¹, L. Galli⁹, M. Ionica⁴, A. Iuliano^{2,3}, K. Kanxheri^{4,27}, A.C. Kraan⁹, C. La Tessa^{34,20}. A. Lauria E. Lopez Torres^{21,6}, M. Magi^{22,12}, A. Manna^{10,11}, M. Marafini^{23,12}, M. Massa⁹, C. Massimi^{10,11} I. Mattei⁷, A. Jereghetti¹⁵, T. Minniti^{24,25}, A. Moggi⁹, M.C. Montesi^{3,26}, M.C. Morone^{24,25}, M. Morrocchi^{8,9}. Muraro⁷, M. Pastrone⁶, V. Patera^{22,12}, F. Peverini^{4,27}, F. Pennazio⁶, C. Pisanti^{10,11}, P. Placidi^{4,28}, M. Pullia¹⁵ L. Ramello^{6,29}, C. Reidel¹⁷, L. Sabatini¹⁸, L. Salvi^{4,27}, C. Sanelli¹⁸, A. Sarti^{22,12}, O. Sato³¹, S. Savazzi¹⁵, L. Scavarda³², A. Schiavi^{22,12}, C. Schuy¹⁷, E. Scifoni²⁰, L. Servoli⁴, G. Silvestre⁴, M. Sitta^{6,30}, R. Spighi¹⁰, E. Spiriti¹⁸, L. Testa^{13,12}, V. Tioukov³, S. Tomassini¹⁸, F. Tommasino^{19,20}, A. Trigilio¹⁸, G. Traini¹², G. Ubaldi^{10,11}, A. Valetti^{5,6}, M. Vanstalle¹⁶, U. Weber¹⁷, R. Zarrella^{10,11}, A. Zoccoli^{10,11} and M. Villa^{10,11} ¹University of Bari, Department of Physics, Bari Italy ² University of Napoli, Department of Physics "E. Pancini", Napoli, Italy ³INFN Section of Napoli, Napoli, Italy ⁴INFN Section of Perugia, Perugia, Italy ⁵University of Torino, Department of Physics, Torino, Italy ⁶ INFN Section of Torino, Torino, Italy ⁷ INFN Section of Milano, Milano, Italy ⁸University of Pisa, Department of Physics, Pisa, Italy ⁹INFN Section of Pisa, Pisa, Italy ¹⁰INFN Section of Bologna, Bologna, Italy ¹¹University of Bologna, Department of Physics and Astronomy, Bologna, Italy ¹² INFN Section of Roma 1, Rome, Italy ¹³University of Rome La Sapienza, Department of Physics, Rome, Italy ¹⁴University of Foggia, Foggia, Italy ¹⁵CNAO Centro Nazionale di Adroterapia Oncologica, Pavia, Italy ¹⁶Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 Strasbourg, France ¹⁷Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ¹⁸INFN Laboratori Nazionali di Frascati, Frascati, Italy ¹⁹ University of Trento, Department of Physics, Trento, Italy ²⁰ Trento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica Nucleare (TIFPA-INFN), Trento, Italy ²¹CEADEN. Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Havana, Cuba ²²University of Rome La Sapienza, Department of Scienze di Base e Applicate per l'Ingegneria (SBAI), Rome, Italy ²³ Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italu ²⁴University of Rome Tor Vergata, Department of Physics, Rome, Italy ²⁵INFN Section of Roma Tor Vergata, Rome, Italy ²⁶University of Napoli, Department of Chemistry, Napoli, Italy ²⁷University of Perugia, Department of Physics and Geology, Perugia, Italy ²⁸University of Perugia, Department of Engineering, Perugia, Italy ²⁹ University of Piemonte Orientale, Department for Sustainable Development and Ecological Transition, Vercelli, Italy ³⁰ University of Piemonte Orientale, Department of Science and Technological Innovation, Alessandria, Italy ³¹Nagoya University, Department of Physics, Nagoya, Japan ³²ALTEC, Aerospace Logistic Technology Engineering Company, Corso Marche 79, 10146 Torino, Italy ³³INFN Section of Bari, Bari, Italy and ³⁴ University of Miami, Radiation Oncology, Miami, FL, United States (The FOOT Collaboration)



Align FOOT detectors and estimate angular acceptance

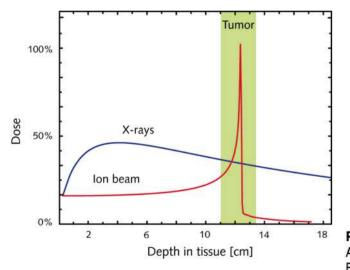
Extract fragment yields from TW

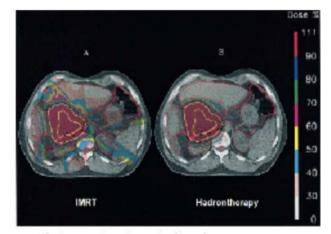
Calculate MC efficiencies for fragments

Cross section results

Ζ	$\theta[^{\circ}]$	$\sigma \pm \Delta_{stat} \pm \Delta_{sys} [b \ sr^{-1}]$	Δ_{stat}/σ	Δ_{sys}/σ
	0 - 0.6	$110\pm13\pm5$	11.6%	4.3%
	0.6 - 1.2	$87\pm 6\pm 3$	7.2%	4%
	1.2 - 1.8	$65 \pm 3 \pm 2$	5.2%	3.1%
	1.8 - 2.4	$45 \pm 2 \pm 1$	4.7%	3.2%
2	2.4 - 3	$34\pm1\pm2$	3.6%	4.4%
	3 - 3.6	$20\pm1\pm1$	4.2%	4.5%
	3.6 - 4.2	$14\pm1\pm0.5$	4.2%	3.5%
	4.2 - 4.8	$9 \pm 0.4 \pm 0.3$	4.3%	3.5%
	4.8 - 5.7	$5\pm0.3\pm0.7$	5%	14%
	0 - 0.6	$9 \pm 4 \pm 0.3$	40%	3.7%
	0.6 - 1.2	$11\pm2\pm0.4$	15%	4.2%
3	1.2 - 1.8	$6\pm1\pm0.2$	17%	3.1%
	1.8 - 2.4	$5 \pm 0.5 \pm 0.2$	9%	3%
	2.4 - 5.7	$1\pm0.04\pm0.04$	5%	4.2%
	0 - 0.6	$13\pm3\pm0.7$	20%	5.3%
4	0.6 - 1.2	$7 \pm 1.5 \pm 0.2$	21%	3.2%
	1.2 - 5.7	$1\pm0.1\pm0.03$	9%	3.5%
	0 - 0.6	$30 \pm 6 \pm 1$	20%	3.1%
5	0.6 - 1.2	$19 \pm 2 \pm 1$	10%	4.7%
	1.2 - 5.7	$1\pm0.1\pm0.05$	7%	4.3%
-	0 - 0.6	$86 \pm 13 \pm 3$	15%	3%
6	0.6 - 1.2	$52 \pm 3 \pm 2$	5.5%	4.3%
	1.2 - 5.7	$2\pm0.1\pm0.08$	5.6%	4.6%
_	0 - 0.6	$160\pm15\pm6$	9%	3.9%
7	0.6 - 1.2	$42 \pm 3 \pm 3$	6.8%	7.5%
	1.2 - 5.7	$1\pm0.1\pm0.03$	13%	4.4%

TABLE II. Angular differential cross section measured in this work. The contribution of the statistical and systematic uncertainties is reported separately. The contribution of the statistical and systematic uncertainties to the final result is visible through the reported relative errors.


FIG. 6. Angular differential cross sections for fragments $2 \le Z \le 7$.


Cross section results

Hadrontherapy

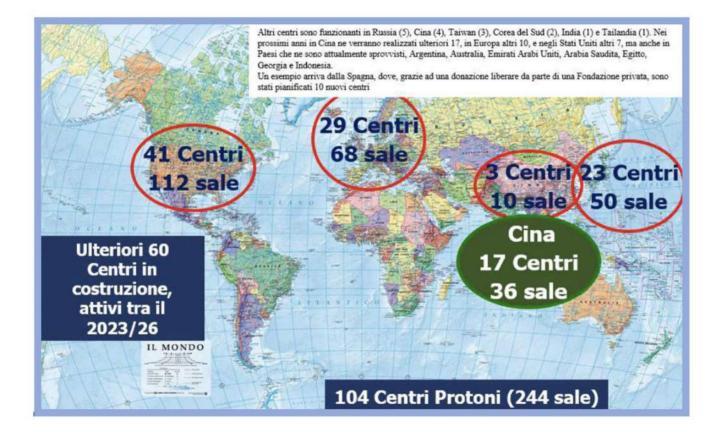
Hadrontherapy: a form of radiotherapy that uses hadrons for the treatment of solid tumours

Pancreatic tumor treatment planning A: Intensity modulated coplanar photon beam (9 beams) B: Coplanar proton beam (4 beams)

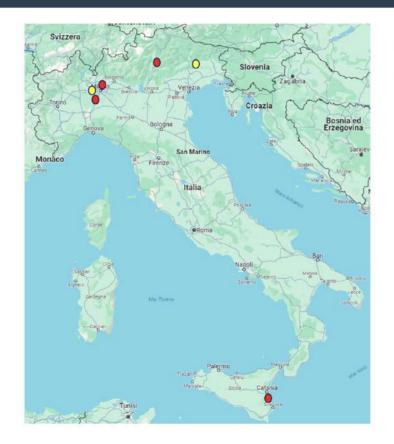
Main properties:

- Better dose conformation over the tumour volume, minimizing the damage in the healthy tissues
- Enhanced biological effectiveness for heavy ion therapy (Z>1)
- Mainly proton and carbon ion treatment centres

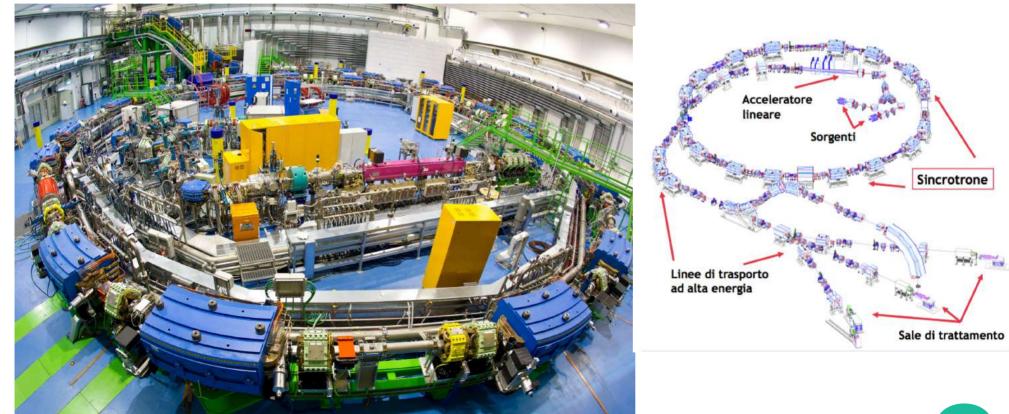
Particle therapy brief timeline


- 1954 Berkeley treats the first patient and begins extensive studies with various ions
- 1957 first patient treated with protons in Europe at Uppsala
- 1961 collaboration between Harvard Cyclotron Lab. and Massachusetts General Hospital
- 1993 patients treated at the first hospital-based facility at Loma Linda
- 1994 first facility dedicated to carbon ions operational at HIMAC, Japan
- 2009 first European proton-carbon ion facility starts treatment in Heidelberg

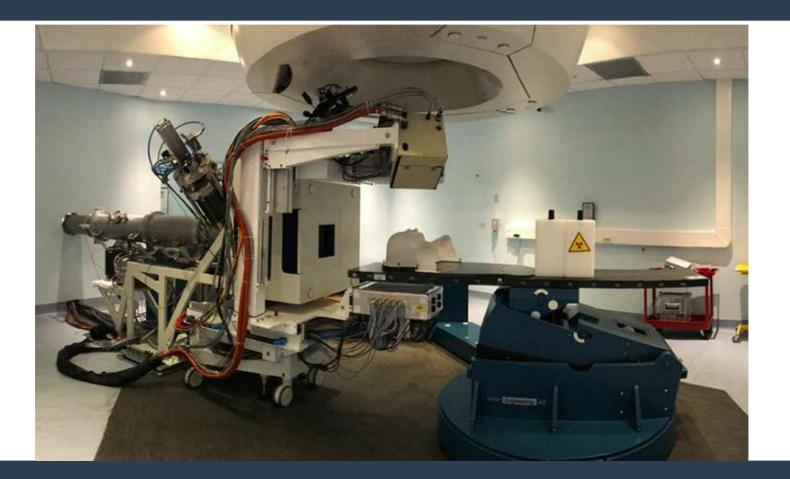
2017 - hadrontherapy treatments included in the Italian SSN

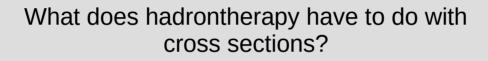

1st TAKE HOME MESSAGE: Science needs time!!!

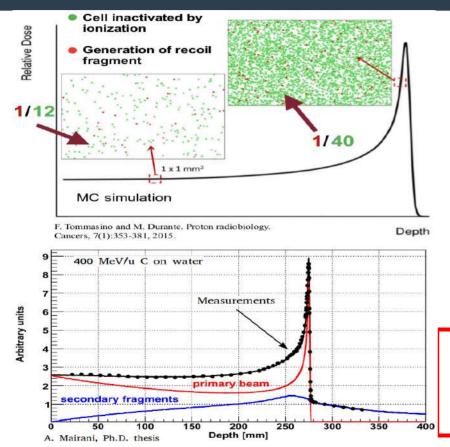
Particle therapy facilities at present



Particle therapy facilities in Italy

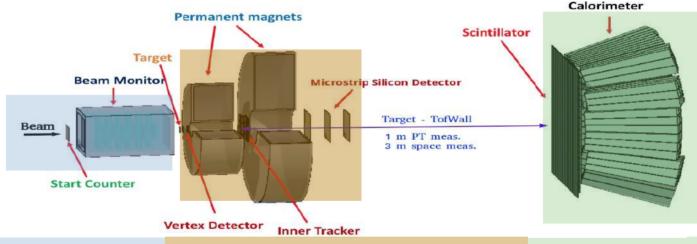



- Operating centers
- Centers under construction



Nuclear physics (for hadrontherapy)

Nuclear interactions not always included with sufficient details in the treatment planning systems (TPS), especially in proton therapy


- Target fragmentation in proton therapy (Z=1; 50-250 MeV)
- Projectile fragmentation in heavy ion therapy (Z>1; 50-400 MeV/u)
- Data available with integrated cross sections
- Differential cross sections data only from Ganil (¹²C @ 50 and 95 MeV/u, 2011)

Need of differential cross section data to improve the TPS and explore the possibility to exploit new particles such as ¹⁶O and ⁴He

(lack of data especially for ⁴He)

The FOOT experiment

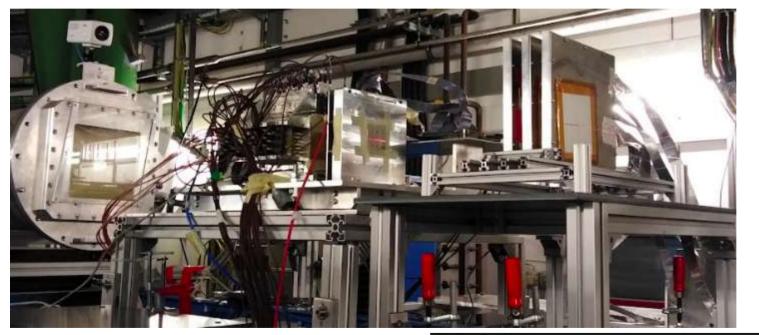
Electronic spectrometer to detect the fragments with Z \geq 3 and θ <10°

Pre target region:

- Plastic scintillator for TOF and trigger measurements
- Drift chamber for the beam direction and position meas.

Tracking region:

- Silicon pixel and strip detectors for track and momentum reco
- Permanent magnet in Halbach conf. ~ 1.4 T \perp the beam axys


Downstream region:

- Plastic scintillator bars for the TOF and dE/dx measurements
- Calorimeter for the kinetic energy measurement

The FOOT experiment

Electronic spectrometer data takings

Angular differential and elemental fragmentation cross sections of a 400 MeV/u 16 O beam on a graphite target with the FOOT experiment

R. Ridolfi^{10,11}, M. Toppi^{22,12}, A. Mengarelli¹⁰, M. Dondi^{10,11}, A. Alexandrov³, B. Alpat⁴, G. Ambrosi⁴, S. Argiro^{5,6}, M. Barbanera⁴, N. Bartosik⁶, G. Battistoni⁷, M.G. Bisogni^{8,9}, V. Boccia^{2,3}, F. Cavanna⁶, P. Cerello⁶ E. Ciarrocchi^{8,9}, A. De Gregorio^{13,12}, G. De Lellis^{2,3}, A. Di Crescenzo^{2,3}, B. Di Ruzza¹⁴, M. Donetti^{15,6}, Y. Dong⁷ M. Durante^{2,17}, R. Faccini^{13,12}, V. Ferrero⁶, C. Finck¹⁶, E. Fiorina⁶, M. Francesconi³, M. Franchini¹ G. Franciosin^{22,12}, G. Galat¹¹, L. Gall⁹, M. Ionica⁴, A. Iuliano²³, K. Kanxher^{11,27}, A. C. Kraan⁹, C. La Tesse^{34,20} A. Laura^{2,3}, E. Lopez Torres^{21,6}, M. Magi^{22,12}, A. Manna^{10,11}, M. Marafini^{23,12}, M. Masse⁹, C. Massimi^{10,11} I. Mattei⁷, A. Mereghetti¹⁵, T. Minniti^{24,25}, A. Moggi⁹, M.C. Montesi^{3,26}, M.C. Morone^{24,25}, M. Morrocchi^{8,9} L. anatori, A. astregnetu, I. J. animit", A. akagir, also, another", also, antronom", also antronom also antronom antronom and also antronom antronom and also antronom and also antronom antronom and also antronom antron University of Bari, Department of Physics, Bari Italy ²University of Napoli, Department of Physics "E. Pancini", Napoli, Italy ³INFN Section of Napoli, Napoli, Italy ⁴INFN Section of Perugia, Perugia, Italy ⁵University of Torino, Department of Physics, Torino, Italy ⁶INFN Section of Torino, Torino, Italy ⁷INFN Section of Milano, Milano, Italy University of Pisa, Department of Physics, Pisa, Italy ⁹INFN Section of Pisa, Pisa, Italy ¹⁰INFN Section of Bologna, Bologna, Italy ¹¹University of Bologna, Department of Physics and Astronomy, ¹²INFN Section of Roma 1, Rome, Italy 13 University of Rome La Sapienza, Department of Physics, Rome, Italy ¹⁴University of Foggia, Foggia, Italy ¹⁵CNAO Centro Nazionale di Adroterapia Oncologica, Pavia, Italy ¹⁶Université de Strabourg, CNRS, IPHC UMR 7871, F-67000 Strabourg, France ophysics Department, GSI Helmholtzentrum für Schwerionenforschung, Darmstadt, Germany ¹⁸ INFN Laboratori Nazionali di Frascati, Frascati, Italy
¹⁹ University of Trento, Department of Physics, Trento, Italy ²⁰ Trento Institute for Fundamental Physics, Itenus, Italy
 ²⁰ Trento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica Nucleare (TIFPA-INFN), Trento, Italy ¹⁰ Initia Nazimuk di Fuico Necleore (TIFFA-INNS), Trento, Itay Ventily of CAUDA, Contro da Ajdoccana Erandopica y Dearmillo Medicar, Russan, Culta ventily of CAUDA, Contro della Fuica e Contro Shake r Ricerche Enviro Formi, Rume, Italy ²⁰ Manos Storico della Fuica e Contro Shake r Ricerche Enviro Formi, Rume, Italy ²⁰ Inversity of Rume Tar. Vengala, Department of Constructy, Ruba, Italy ²⁰ Inversity of Agabas, Department of Constructy, Ruba, Italy ²⁰ Wirestruk (State State), Department of Constructy, Ruba, Italy ²⁰ Wirestruk (State), Department of Constructy, Ruba, Italy and ²⁰ Wirestruk (State), Department of Constructy, Ruba, Italy and ²⁰ Wirestruk (State), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (State), Department of Constructy, Ruba (State), Italy and ²⁰ Wirestruk (State), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (State), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (State), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (Ruba), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (Ruba), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (Ruba), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (Ruba), Department of Constructy, Ruba (Ruba), Italy and ²⁰ Wirestruk (Ruba), Department (State), Department (State), Italy and ²⁰ Wirestruk (Ruba), Department (State), Department (S ²⁷University of Perugia, Department of Community, vapos, italy ²⁸University of Perugia, Department of Bayineering, Perugia, Italy ²⁸University of Perugia, Department of Bayineering, Perugia, Italy University of Pienonte Orientale, Department for Sustainable Development and Ecological Transition, Vercelli, Italy ³⁰ University of Piermonte Orientale, Department of Sussainable Development and Ecological Innovation, Percent, 30 University of Piermonte Orientale, Department of Science and Technological Innovation, Alessandria, Italy 31 Nagoga University, Department of Physics, Nagoga, Japan ³²ALTEC, Aerospace Logistic Technology Engineering Company, Corso Marche 79, 10146 Torino, Italy ³³INFN Section of Bari, Bari, Italy and ³⁴University of Miami, Radiation Oncology, Miami, FL, United States (The FOOT Collaboration)

2nd take home message:

"Physics is like sex: sure, it may give some practical results, but that's not why we do it."

Richard P. Feynman

Did you enjoy the Lab2go experience?

Scientists (what people think)

Some people think scientists exclaim When experiments,

Elemental fragmentation cross sections for a ¹⁶O beam of 400 MeV/u kinetic energy interacting with a graphite target using the FOOT $\triangle E$ -TOF detectors

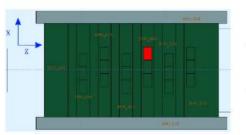
M. Toppi^{1,2}, A. Sarti^{1,3}, A. Alexandrov^{4,5}, B. Alpat⁶, G. Ambrosi⁶, S. Argirò^{7,8}, R. A Diaz⁹, M. Barbanera⁶, N. Bartosik⁸,

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

s, and memory in privates research. A 960 (2021) 1097 b

journal homepage: www.elsevier.com/locate/nima


The Drift Chamber detector of the FOOT experiment: Performance analysis and external calibration

Scientists (reality)

Channel lost

- The capacitors used in the voltage stabilizer circuit have been damaged.
- During the substitution of the capacitors, one sense wire of a cell has been broken and it has been extracted.

3rd take home message: physics (actually, not just physics) is trial and error. The important thing is to have fun

Scientists (reality)

