

Liceo Gaetana Agnesi

CAMERA A NEBBIA CON GHIACCIO SECCO E CON GEL: REALIZZAZIONE E CONFRONTO

esperimento con due prototipi di raffreddamento

A. IACAMBO, M. ALÌ, F. NARDINI, V. ORLANDO, M. LAVIA C. CRISCUOLO,C. SEGALINI,G. VETTORATO, A.PARISI,F. PINSUTI,T. ARCHIDI, J.SCIASCIA

CHE COS'È LA CAMERA A NEBBIA?

La camera a nebbia (o camera a nebbia di Wilson) è uno strumento utilizzato per rilevare le particelle cariche ionizzanti (come elettroni, protoni, particelle alfa, ecc.) rendendo visibili le loro tracce. È uno strumento didattico molto usato per mostrare in modo diretto la radioattività naturale o artificiale.

La camera è riempita con una **miscela di aria e vapore d'alcol** (solitamente **isopropilico**) in condizione di sovrasaturazione.

Quando una **particella ionizzante** attraversa la camera, ionizza le **molecole del gas** lungo il suo percorso. Attorno agli **ioni** si **condensa il vapore**, formando delle **tracce visibili**, simili a scie lasciate dagli aerei. Ogni tipo di particella produce una traccia con forma e spessore caratteristici.

Per mantenere la miscela di aria e vapore in sovrasaturazione è necessario creare un **gradiente di temperatura** nella camera.

Non vi è un unico modo per realizzarlo: esiste un **modello classico** che richiede un raffreddamento con **ghiaccio** secco o azoto liquido, ed una versione senza ghiaccio che impiega un sistema di raffreddamento basato sull'utilizzo di **ghiaccio-gel.**

GHIACCIO SECCO

Il ghiaccio secco è anidride carbonica solida, con temperatura di circa -78°C. È uno dei metodi più usati per raffreddare la base della camera.

Realizzazione:

Preparazione del contenitore: rivesti il coperchio o la parte interna superiore con il panno assorbente e imbevilo con l'alcol isopropilico.

Saturazione del vapore: richiudi il contenitore ermeticamente. Il vapore dell'alcol evaporerà e saturerà l'ambiente interno.

Raffreddamento: appoggia la base del contenitore sulla lastra fredda o sul ghiaccio secco. La base si raffredderà rapidamente, creando un gradiente di temperatura.

Formazione della nebbia: quando la miscela di aria ed alcol satura calda si sposta nella parte più fredda della camera va in sovrasaturazione ovvero diventa una nebbia ovvero una nebbia pronta a condensarsi su eventuali particelle presenti.

Osservazione delle particelle: in presenza di particelle cariche (provenienti da sorgenti naturali come i raggi cosmici), si vedranno delle scie bianche che attraversano la camera, simili a piccole nuvolette filiformi.

Pro:

-Sistema efficace: raggiunge facilmente la temperatura necessaria per la sovrasaturazione.

- -Realizzazione relativamente semplice.
- -Tracce molto visibili e ben definite: è possibile distinguere le particelle in base alla lunghezza e spessore della scia. Contro:
- -Consumabile: Il ghiaccio secco si sublima col tempo, anche se non utilizzato.
- -Costoso e richiede una programmazione della consegna.
- -Bisogna prestare attenzione nella manipolazione.
- La durata dipende dalla quantità: in teoria, se si ha una buona scorta, può durare a lungo.

GHIACCIO-GEL

Questo secondo metodo di realizzazione è simile al primo tranne che per la parte di gradiente termico, quindi illustreremo solo le sue differenze con la camera con ghiaccio secco.

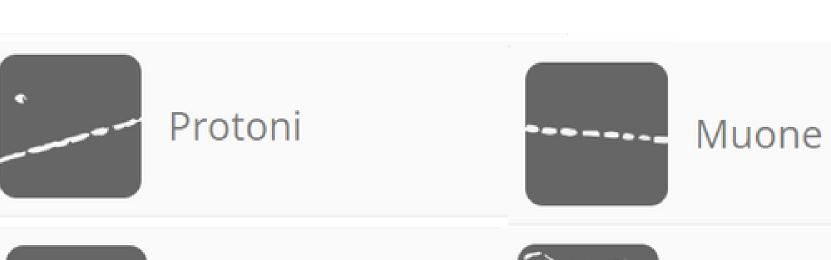
Il ghiaccio gel è un'alternativa più semplice: si tratta di sacchetti riutilizzabili (come quelli da freezer), che raggiungono temperature attorno ai –18°C.

Realizzazione

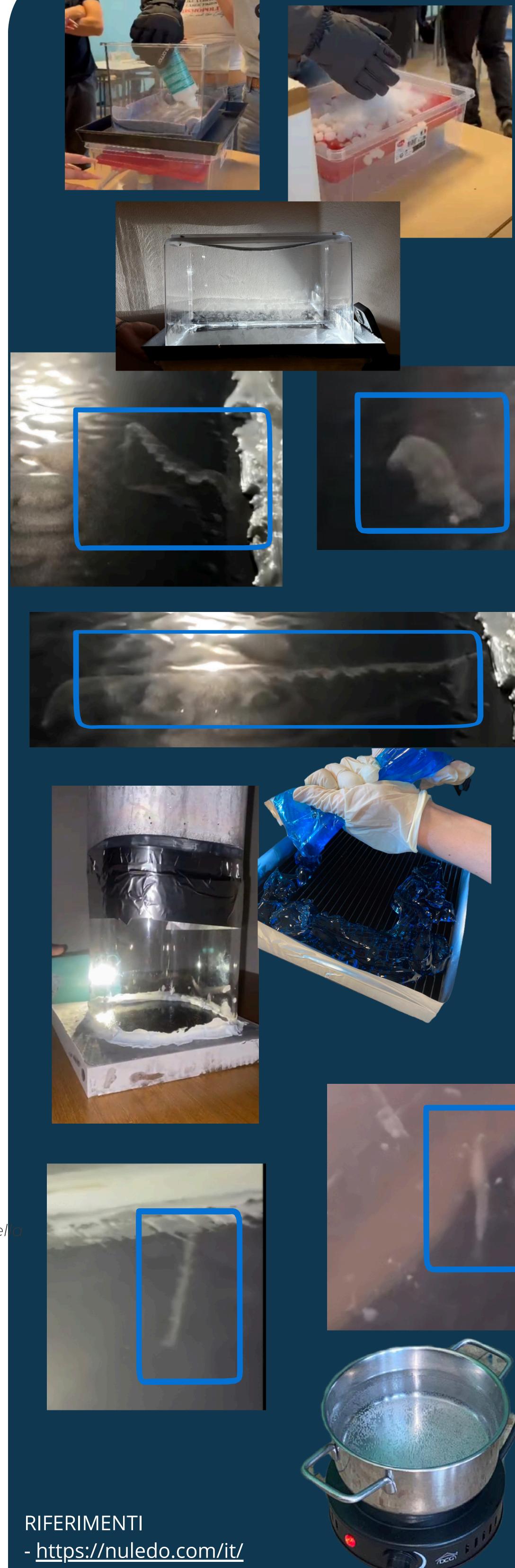
- I sacchetti di ghiaccio gel vengono posizionati sotto la base della camera per abbassarne la temperatura.
- Poiché questa temperatura non è sufficientemente bassa da garantire una buona sovrasaturazione del vapore alcolico, è possibile compensare creando un gradiente termico: si può infatti versare dell'acqua bollente su una struttura rialzata posta sopra la camera, in modo da riscaldare la parte superiore e favorire la condensazione nel parte inferiore.

Pro:

- -Sistema riutilizzabile molte volte, senza costi aggiuntivi.
- -Facile da reperire e conservare.
- -Sicuro e facile da maneggiare.


Contro:

- -Raggiunge temperature troppo alte per garantire una sovrasaturazione ottimale.
- -Le **tracce sono meno visibili** e più difficili da distinguere.
- -Richiede soluzioni aggiuntive (come acqua calda) per migliorare le prestazioni.


CONCLUSIONI

In conclusione, dal confronto tra le due modalità si può evincere che quella che comporta più vantaggi sia la prima citata, la camera a nebbia con ghiaccio secco. I vantaggi di quest'ultima sono sopra indicati: anche se gli ingredienti per portarla a termine sono meno reperibili rispetto a quelli della camera a ghiaccio gel. La sovrasaturazione ottenuta con questa è più precisa e ottimale soprattutto dal punto di vista della temperatura. Le tracce appaiono più visibili senza il bisogno di aggiunte esterne come l'acqua bollente. Il secondo metodo di osservazione, tuttavia, è più economico e ha un fattore di riutilizzazione. Alla fine è più consistente e consigliabile per un progetto scolastico la prima modalità.

Esempi di fenomeni osservabili:

https://youtu.be/gt3Ad5 Z5IA

make-your-own-cloud-chamber

- https://home.cern/news/news/experiments/how-

- M. Kamata e M. Kubota, Simple cloud chambers

using gel ice packs, Physics Education, 2012

Particelle Alfa