Direct Studies of Stellar Reactions: Progress and Prospects from LUNA

Marialuisa Aliotta School of Physics and Astronomy - University of Edinburgh, UK Scottish Universities Physics Alliance

Laboratori Nazionali di Frascati, 04 June 2025

Nuclear Astrophysics in a Nutshell

investigating the MICRO COSMOS (nuclear physics)

to understand the MACRO COSMOS (astrophysics)

Seminar Layout

- key features of Nuclear Astrophysics
- stellar reaction studies in the laboratory
- why going underground?
- the LUNA experiment
- past, present, and future activities (a biassed view!)

M. Aliotta The Messengers of the Universe

electromagnetic emissions

direct messengers

neutrinos, cosmic rays, meteorites, lunar samples, ...

radio, microwave, infrared, optical, X-ray, γ -ray

Crab Nebula SN 1054

gravitational waves

(Solar) Abundance Distribution

Data sources:

Earth, Moon, meteorites, cosmic rays, solar & stellar spectra...

Features:

- 12 orders-of-magnitude span
- H~75%, He~23%
- C → U ~ 2% ("metals")
- D, Li, Be, B under-abundant
- exponential decrease up to Fe
- nearly flat distribution beyond Fe

PUBLICATIONS OF THE Burbidge, Burbidge, Fowler & Hoyle (B²FH): Rev. Mod. Phys. 29 (1957) 547 ASTRONOMICAL SOCIETY OF THE PACIFIC Synthesis of the Elements in Stars* Vol. 69 No. 408 Tune 1957 E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE NUCLEAR REACTIONS IN STARS AND NUCLEOGENESIS* Kellogg Radiation' Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, A. G. W. CAMERON California Institute of Technology, Pasadena, California Atomic Energy of Canada Limited Chalk River, Ontario 10¹⁰ stellar H-, He, C, O, Si-burning on Nuclear Astrophysics stars, supernovae A.G.W. Cameron s-process He-burning in AGB stars, 10⁶ massive stars fusion of Abundance neutron-capture charged particles r-process reactions **JINA** lectures type II supernovae, mainly stable nuclei merging neutron stars mainly unstable 10° nuclei M. Wiescher, cosmic rays 10-6 50 100 150 200 0 А

Stellar Nucleosynthesis: A Major Breakthrough

M Aliotta

massive stars contribute to chemical evolution of the Universe

low-mass stars critical for existence and evolution of life

M. Aliotta

Nuclear Astrophysics: A truly interdisciplinary field

BEAM-STOP

Nuclear Physics

experimental and theoretical inputs stable and exotic nuclei

BEAM PROFILE

FLECTR

BEAM-TRANSPORT SYSTEM

NUCLEAR

ACCELERATOR

ANALYZE

Astrophysics

stellar evolutionary codes

nucleosynthesis calculations

Atomic Physics

radiation-matter interaction energy losses, stopping powers, spectral lines materials and detectors

Plasma Physics

degenerate matter electron screening equation of state

Astrophysical Reaction Studies in the Laboratory: Experimental Challenges

Schematic Layout for Nuclear (Astro-)Physics Experiments

BEAMS

M Aliotta

Experimental Challenges

Example: ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$

M. Aliotta Main Sources of Background

ideal location: underground + low concentration of U and Th

M. Aliotta LUNA: A Brief Introduction

LUNA: Laboratory for Underground Nuclear Astrophysics (established early 1990s)

M. Aliotta

Gamma-ray background: underground vs overground comparison

M. Aliotta The LUNA 400 kV facility

M. Aliotta

LUNA: The First Underground Laboratory for Nuclear Astrophysics

30 years of Nuclear Astrophysics at LUNA (LNGS, INFN)

- solar fusion reactions ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ ${}^{2}\text{H}(p,\gamma){}^{3}\text{He}$ ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- electron screening and stopping power
 ²H(³He,p)⁴He
 ³He(²H,p)⁴He
- CNO, Ne-Na and Mg-Al cycles
 ^{12,13}C(p,γ)^{13,14}N
 ^{14,15}N(p,γ)^{15,16}O
 ¹⁶O(p,γ)¹⁷F
 ^{20,21,22}Ne(p,γ)^{21,22,23}Na
 ²²Ne(α,γ)²⁶Mg
 ²³Na(p,γ)²⁴Mg
 ²⁵Mg(p,γ)²⁶Al
- (explosive) hydrogen burning in novae and AGB stars ${}^{17}O(p,\gamma){}^{18}F$ ${}^{17}O(p,\alpha){}^{14}N$ ${}^{18}O(p,\gamma){}^{19}F$ ${}^{18}O(p,\alpha){}^{15}N$
- Big Bang nucleosynthesis

 2 H(α , γ) 6 Li 2 H(p, γ) 3 He 6 Li(p, γ) 7 Be

neutron capture nucleosynthesis

¹³C(a,n)¹⁶O

some of the lowest cross sections ever measured (few counts/month)

ca. 24 reactions in 30 years: ~15 months data taking per reaction!

The Past: Recent Selected Highlights

- Big Bang Nucleosynthesis:
- O-rich Pre-Solar Grains:
- Neutron source for heavy elements:

²H(p, γ)³He (gamma rays) ¹⁷O(p, α)¹⁴N (charged particles) ¹³C(α ,n)¹⁶O (neutrons)

Big Bang Nucleosynthesis

M. Aliotta Cosmic Microwave Background

Cosmic Microwave Background (CMB) radiation

oldest electromagnetic radiation in the Universe (~ 380,000 y after Big Bang)

NASA - http://wmap.gsfc.nasa.gov/media/101080

accidentally discovery by Penzias and Wilson in 1965 (Nobel Prize in 1978)

M. Aliotta Big Bang Nucleosynthesis

BBN is only tool to probe state of early universe ⁷Be (7,0) atter 7Li (P. He) (D,p) → 4He atter 3Не (?,?) (p,y) (D,n) D.n) (n,y) (D,p) p 11 reactions + neutron decay n

M. Aliotta Big Bang Nucleosynthesis

determine baryon density from comparison between BBN predictions and observations

Deuterium is an excellent baryometer

- D is only produced during Big Bang Nucleosynthesis
- D is destroyed easily in stars
- D abundance is the most sensitive to the baryon density $\Omega_{\rm b}h^2$

- baryon density inferred from BBN \rightarrow early epoch
- baryon density inferred from CMB → recombination epoch (380000 years after Big Bang)

according to Standard Cosmological Model (Λ CDM)

baryon density can only vary as a result of Universe expansion, which can be calculated

if present-day value of Ω_{b} (BBN) = Ω_{b} (CMB) \rightarrow validity of Λ CDM if present-day value of Ω_{b} (BBN) $\neq \Omega_{b}$ (CMB) \rightarrow new physics beyond Λ CDM

independent determinations of Ω_b can provide useful tests

M. Aliotta The $d(p,\gamma)^{3}$ He reaction: state of the art before study at LUNA

- Astronomical observations of deuterium abundance have reached % accuracy [Cooke et al, APJ 781 (2014) 31]
- BBN predictions of deuterium abundance affected by large uncertainties [Di Valentino et al, PRD 90 (2014) 023543]

Primordial Deuterium Abundance: The $d(p,\gamma)^3$ He Reaction

M. Aliotta The $d(p,\gamma)^3$ He reaction at LUNA

Experimental Setup

- proton beam (100 uA)
- E_{beam} = 50 400 keV (full BBN range)
- extended D₂ gas target (99.99% isotopic purity)
- Beam stop = calorimeter -> current measurement

M. Aliotta The $d(p,\gamma)^3$ He reaction at LUNA

faster destruction of deuterium better agreement with observations

Mossa et al. EPJA, 56 (2020) 144

Source	Method	ΔS/S (%) 0.2	
Beam energy	Direct measurement		
Energy loss	Low gas pressure	0.04	
T and P profiles	Direct measurement	1.0	
Beam heating	Direct measurement	0.5	
Gas purity	Data sheet	0.1	
Beam current	Calorimeter calibration	1.0	
Efficiency	Direct measurement	2.0	
Instrumental effects	Pulser method	0.2	
Angular distribution	Simulations	0.5	
Total		2.6	

Mossa et al. Nature, 587 (2020) 210

The d(p, γ)³He reaction at LUNA

Article Published: 11 November 2020

The baryon density of the Universe from an improved rate of deuterium burning

V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, T. Chillery, G. F. Ciani, P. Corvisiero, L. Csedreki, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, E. M. Fiore, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino ⊠, G. Gyürky, G. Imbriani, M. Junker, A. Kievsky, I. Kochanek, M. Lugaro, L. E. Marcucci, C Mangano, P. Marigo, E. Masha, R. Menegazzo, F. R. Pantaleo, V. Paticchio, R. Perrino, D. Piatti, O. Pisanti, P. Prati, L. Schiavulli, O. Straniero, T. Szücs, M. P. Takács, D. Trezzi, M. Viviani & S. Zavatarell ⊠ -Show fewer authors

Nature **587**, 210–213(2020) | Cite this article

baryon density ($\Omega_b h^2$) now in excellent agreement with Planck and with comparable uncertainty

analysis by Gianpiero Mangano and Ofelia Pisanti (Uni Naples)

Pre-Solar Grains Composition: the ${}^{17}O(p,\alpha){}^{14}N$ reaction

M. Aliotta Pre-solar

Murchison meteorite geosci.uchicago.edu

Pre-solar grains in meteorites

Pre-solar grains: stellar dust trapped in meteorites

Pre-solar grains in meteorites

M. Aliotta

Background Suppression

Bruno et al EJPA 51 (2015) 94

$^{17}O(p,\alpha)^{14}N$ Results

M Aliotta

PHYSICAL REVIEW LETTERS

Improved Direct Measurement of the 64.5 keV Resonance Strength in the ${}^{17}O(p,\alpha){}^{14}N$ Reaction at LUNA

C. G. Bruno,^{1,*} D. A. Scott,¹ M. Aliotta,^{1,†} A. Formicola,² A. Best,³ A. Boeltzig,⁴ D. Bemmerer,⁵ C. Broggini,⁶ A. Caciolli,⁷ F. Cavanna,⁸ G. F. Ciani,⁴ P. Corvisiero,⁸ T. Davinson,¹ R. Depalo,⁷ A. Di Leva,³ Z. Elekes,⁹ F. Ferraro,⁸ Zs. Fülöp,⁹ G. Gervino,¹⁰ A. Guglielmetti,¹¹ C. Gustavino,¹² Gy. Gyürky,⁹ G. Imbriani,³ M. Junker,² R. Menegazzo,⁶ V. Mossa,¹³ F. R. Pantaleo,¹³ D. Piatti,⁷ P. Prati,⁸ E. Somorjai,⁹ O. Straniero,¹⁴ F. Strieder,¹⁵ T. Szücs,⁵ M. P. Takács,⁵ and D. Trezzi¹¹

On the origin of Group II grains

nature astronomy

PUBLISHED: 30 JANUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0027

Origin of meteoritic stardust unveiled by a revised proton-capture rate of ¹⁷O

M. Lugaro^{1,2*}, A. I. Karakas²⁻⁴, C. G. Bruno⁵, M. Aliotta⁵, L. R. Nittler⁶, D. Bemmerer⁷, A. Best⁸, A. Boeltzig⁹, C. Broggini¹⁰, A. Caciolli¹¹, F. Cavanna¹², G. F. Ciani⁹, P. Corvisiero¹², T. Davinson⁵, R. Depalo¹¹, A. Di Leva⁸, Z. Elekes¹³, F. Ferraro¹², A. Formicola¹⁴, Zs. Fülöp¹³, G. Gervino¹⁵, A. Guglielmetti¹⁶, C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁸, D. Piatti¹¹, P. Prati¹², D. A. Scott^{5,†}, O. Straniero^{14,19}, F. Strieder²⁰, T. Szücs¹³, M. P. Takács⁷ and D. Trezzi¹⁶

new LUNA rate allows to reproduce correct abundances

confirms intermediate mass AGB as likely site of production

for oxygen-rich pre-solar grains

Presolar grains	AGB models
♦ Group I	4.5 M _☉ 5.0 M _☉ 6.0 M _☉

The Creation of Heavy Elements: the ${}^{13}C(\alpha,n){}^{16}O$ reaction

The Creation of Heavy Elements

Neutron capture reactions: the s(low) and the r(apid) processes

M Aliotta

M Aliotta Neutron Background Reduction at LNGS

Csedreki et al. NIMA 994 (2021) 165081

The ¹³C(α ,n) ¹⁶O reaction at LUNA

The Present: Currently Ongoing M. Aliotta

Just Completed and Ongoing Reaction Studies at LUNA (with strong Edinburgh involvement)

 $^{16}O(p,\gamma)^{17}F$ $^{16}O/^{17}O$ ratio in red giants and AGB spectra; pre-solar grain compositions

Duncan Robb's PhD project

²¹Ne(p,γ)²²Na

first and slowest reaction in NeNa cycle; ²²Na production in novae

Ragan Sidhu (now Fellow @Surrey)

²³Na(p, α)²⁰Ne O-Na anti-correlation in spectra of globular clusters

²⁷Al(p,α)²⁴Mg Mg and Al abundances; MgAl cycle; ²⁶Al abundance

Lucia Barbieri's PhD project

M. Aliotta

LUNN

A new 3.5 MV Accelerator with ECR Ion Source: Bellotti Ion Beam Facility

Sen et al. NIM B450 (2019) 390

European Research Council Established by the European Commission

SHADES Andreas Best (Naples)

Plans for the Future...

NUclear CLustering Effects in Astrophysical Reactions

NUCLEAR

Nucleosynthesis in First Stars and Other Puzzles

European Research Council

erc

UK Research and Innovation

Long-Standing Questions in Nuclear Astrophysics

THE UNIVERSITY of EDINBURGH

Q1. Cosmological Lithium Problem

Q2. Nucleosynthesis in First Stars

made of pristine H and He very massive \rightarrow need CNO nuclei

Chemical Evolution of Early Universe + Astronomical Observations (JWST)

Q3. Electron Screening Puzzle

discrepancy between experiment and theory remains unexplained

Reactions in Plasmas Fusion-driven Energy Generation

Standard Model of Particle Physics + Cosmology

Long-Standing Questions in Nuclear Astrophysics

Q1. Cosmological Lithium Problem

factor of 3 discrepancy between observed and predicted Li abundance

Q2. Nucleosynthesis in First Stars

made of pristine H and He very massive \rightarrow need CNO nuclei

Q3. Electron Screening Puzzle

discrepancy between experiment and theory remains unexplained

key to unlock all three puzzles

Nuclear Clustering

lower Coulomb barrier \rightarrow enhanced fusion

The Cosmological Lithium Problem(s)

M. Aliotta Big Bang Nucleosynthesis

Primordial Nucleosynthesis (BBN) and Primordial Abundances 100 Helium 4 (⁴He) 3 minutes after Big Bang 10-1 Element Abundance (Relative to Hydrogen) Deuterium (²H) 10⁻² n → pev n(p, y)d 3 d(d, p)t 10⁻³ 4 d(p, y)³He 🖪 d(d, n)³He 6 ³He(n, p)t 10-4 7 t(d, n)4He 8 d(d, y)⁴He Helium (³He) 10-5 3He(d, p)4He ⁷Be 10 t(a, y)7Li WMAP Observation 12 4He(a, y)⁷Be 10⁻⁶ 12 7Be(n, p)7Li 7Li 10-7 10⁻⁸ 9 ⁴He ³He 10⁻⁹ 7 6 ۱H ^{2}d 34 10-10 Lithium (7Li) 10-11 1n 10-12 10-10 10⁻⁹ 10-11 10-8 10-7

Density of Ordinary Matter (Relative to Photons)

adapted from Fields (2011) ARNPS©

M Aliotta

The Cosmic Lithium Problem: Possible Solutions

D, ³ He and ⁴ He:	good agreement
Li:	overestimated by factor 3!

Astrophysics:

incorrect interpretation of astronomical observation? depletion mechanisms in stars?

Nuclear physics:

wrong or incomplete nuclear reaction rates? other key reactions controlling ⁷Li yield?

Non-standard model:

current theories incorrect or incomplete?

Nucleosynthesis in First Stars

M Aliotta

Identikit of First Stars

- formed 200-400 million years after Big Bang
- very massive (up to 100-1000 M_{\odot})

- made of primordial H and He
- no CNO to sustain star against gravity

How did first stars evolve?

- burn He via 3α ?
- form CNO nuclei?
- die as CCSN, pair production SN, or BHs?

First Stars and Their Imprints

First stars are difficult to observe today...

M Aliotta

M Aliotta

Nuclear Clustering: A Possible Solution?

Eur. Phys. J. A (2021) 57:24 https://doi.org/10.1140/epja/s10050-020-00339-x THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Nuclear clusters as the first stepping stones for the chemical evolution of the universe

Michael Wiescher^{1,a}, Ondrea Clarkson², Richard J. deBoer¹, Pavel Denisenkov²

¹ Department of Physics, The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA

² Department of Physics & Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada

M Aliotta Current Status

THE UNIVERSITY of EDINBURGH

Experimental Program: α -induced reactions on Li and B isotopes

optimize information transfer across boundaries for accelerated progress with widest impact

Theoretical Program

Computational Program

M Aliotta

NUCLEAR

Work Programme and Outcomes

Experimental Programme WP1: PI, PDRA1, PhD1,PhD2

Laboratory for Underground Nuclear Astrophysics

- α +Li and α +B reactions (Q1-Q3)
- ultra-low background @LUNA
- lowest-energy data (world best)

- stellar models for first stars (MESA)
- nucleosynthesis networks (NuGRID)
- impact on Q1 and Q2

M Aliotta

NUCLEAR

Grant Start Date: 2 December 2024

News Project People Outputs Collaborations Contact Home

https://www.erc-nuclear.uk

PDRA Experiment Alessandro Compagnucci (from February 2025)

PDRA Theory Kevin Becker (from July 2025)

10 B + α Reaction Studies at LUNA 400kV

M Aliotta

Upcoming measurements at LUNA

silicon detector array

Rhys Bonnell, PhD

 $^{10}B(\alpha,n)^{13}N$ activation measurement:

detect 511 keV annihilation γ rays following β + decay of ^{13}N (t $_{_{1\!/_2}}$ ~ 10 mins) in opposite crystals

segmented BGO detector

Charged-particle + Gamma-ray Detection Setup

First Spectra (just acquired): ${}^{10}B(\alpha,p\gamma){}^{12}C$

^{6,7}Li + α Reaction Studies at Bellotti Facility

3.5 MV accelerator

 $^{4}\text{He}^{+}$ (TV: 0.3 – 0.5 MV): 300 μA $^{4}\text{He}^{+}$ (TV: 0.5 – 3.5 MV): 500 μA

^{6,7}Li(α,γ) reactions: prompt γ -ray measurements

THE UNIVERSITY of EDINBURGH

M Aliotta

NUCLEAR

To Conclude...

- nuclear astrophysics is a very lively & highly interdisciplinary research field
- low-energy, stable-beam experiments pose major experimental challenges
- major advances can come from underground measurements

Article Published: 11 November 2020

The baryon density of the Universe from an improved rate of deuterium burning

V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, T. Chillery, G. F. Ciani, P. Corvisiero, L. Csedreki, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, E. M. Fiore, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino 🖂, G. Gyürky, G. Imbriani, M. Junker, A. Kievsky, I. Kochanek, M. Lugaro, L. E. Marcucci, G. Mangano, P. Marigo, E. Masha, R. Menegazzo, F. R. Pantaleo, V. Paticchio, R. Perrino, D. Piatti, O. Pisanti, P. Prati, L. Schiavulli, O. Straniero, T. Szücs, M. P. Takács, D. Trezzi, M. Viviani & S. Zavatarelli Show fewer authors

Nature 587, 210-213(2020) Cite this article

G. Imbriani^{1,2,3}, H. Costantini⁴, A. Formicola^{5,6}, D. Bemmerer⁷, R. Bonetti⁸, C. Broggini⁹, P. Corvisiero⁴, J. Cruz¹⁰, Z. Fülöp¹¹, G. Gervino¹², A. Guglielmetti⁸, C. Gustavino⁶, G. Gyürky¹¹, A. P. Jesus¹⁰, M. Junker⁶, A. Lemut⁴, Z. Fülöp¹¹, G. Gervino¹², A. Guglielmetti⁸, C. Rolfs⁵, M. Romano^{2,3}, C. Rossi Alvarez⁹, F. Schümann⁵, E. Somorjai¹¹, AL REVIEW LETTERS

PRL 117, 142502 (2016)	PHYSICAL	REVIEW	LETTERS	30 SEPTEMBER 2016
------------------------	----------	--------	---------	-------------------

Improved Direct Measurement of the 64.5 keV Resonance Strength in the ¹⁷O(p,α)¹⁴N Reaction at LUNA

C. G. Bruno,^{1,*} D. A. Scott,¹ M. Aliotta,^{1,†} A. Formicola,² A. Best,³ A. Boeltzig,⁴ D. Bemmerer,⁵ C. Broggini,⁶ A. Caciolli,⁷ F. Cavanna,⁸ G. F. Ciani,⁴ P. Corvisiero,⁸ T. Davinson,¹ R. Depalo,⁷ A. Di Leva,³ Z. Elekes,⁹ F. Ferraro,⁸ Zs. Fülöp,⁹ G. Gervino,¹⁰ A. Guglielmetti,¹¹ C. Gustavino,¹² Gy. Gyürky,⁹ G. Imbriani,³ M. Junker,² R. Menegazzo,⁶ V. Mossa, F. R. Pantaleo,¹³ D. Piatti,⁷ P. Prati,⁸ E. Somorjai,⁹ O. Straniero,¹⁴ F. Strieder,¹⁵ T. Szücs,⁵ M. P. Takács,⁵ and D. Trezzi¹¹

THE LUNA COLLABORATION

http://luna.lngs.infn.it