W,Z analysis

M. Bellomo, INFN

ATLAS Italia

Roma

April 1, 2008

• Measurements of W and Z inclusive cross sections in muon channels

$$\sigma_{V \to ll} = \frac{(N_{obs} - N_{bgk})}{\int \mathcal{L}dt \cdot A \cdot \epsilon}$$

- Acceptances for experimental selections (from MC)
 - ★ Calculate using best EW and QCD NLO predictions from different generators
 - ★ Evaluate the uncertainty coming from PDF's

• Trigger and offline efficiencies (from data)

- ★ Tool to measure efficiency from data: Tag&Probe normalized to ID, MS.
- ★ Differential efficiency maps and impact of pile-up
- Signal selection and background estimation
 - ★ Signal selection and backgrounds estimation from MC and from data (e.g. QCD)
- Integrated Luminosity
 - ★ Considering an initial 10-20% uncertainty

- Using best theoretical description from NLO QCD and EW generators, as:
 - ★ MC@NLO S. Frixione, P. Nason and B.R. Webber [hep-ph/0204244] [hep-ph/0305252]
 - ★ HORACE C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini [JHEP 0612:016,2006] [JHEP 0710:109,2007]
- In particular we are collaborating with HORACE authors in interfacing with ATLAS software for detailed EW studies
 - ★ HORACE_i-00-00-01 is ready and tested (see last <u>MC Generators meeting</u>)
 - ★ EW corrections with lepton $|\eta|$ <2.5 p_T>25 GeV @ **5-10 %**
 - ★ EW corrections for high invariant mass regions (>1 TeV) @ 20-30%

• Acceptance corrections due to geometrical coverage of detector and trigger system

Trigger efficiency from $Z \rightarrow \mu^+ \mu^-$

- Method is "Tag and Probe"
- Measurements wrt ID and wrt combined offline reconstruction: $c_1^*c_2 < 0, 81 < M_{\mu\mu} < 101 \text{ GeV}, pT > 20 \text{ GeV}$
- Background rejection with kinematical and tight isolation cuts:
 - ★ ID ⇒ $\Sigma N^{ID} < 4$, $\Sigma p_T^{ID} < 8$ GeV,
 - ★ Calo ⇒ $E_{jet} < 15 GeV$, $\Sigma E_T^{EM} < 6 GeV$

Background contribution negligible (<0.1%)

ATLAS Italia, Roma - April 1, 2008

Further Systematic Uncertainties

- Efficiency of isolation requirement also determined via Tag and Probe
 - ★ Avoid correlations by determination versus number of reconstructed jets
 - ★ Early Data:
 - $\Delta \epsilon_{iso} / \epsilon_{iso} = 0.002 (stat) \pm 0.003 (sys)$
 - ★ High Luminosity Measurement:
 - $\Delta \epsilon_{iso} / \epsilon_{iso} = 0.000 (stat) \pm 0.001 (sys)$
- Main systematic from background
- Efficiency of kinematic cuts

Uncertainty arises from uncertainty on momentum scale measurement

- ★ $\epsilon_{kinematic} = 0.906 \pm 0.003 (sys)$
- Uncertainty on impact-parameter and misalignments should be negligible

Impacts of **PDFs** on the acceptance must be studied! (few % uncertainty)

$Z \rightarrow \mu^+ \mu^-$ event selection

- \odot Selection based on Muon Spectrometer tracks in $|\eta < 2.5|$
 - ★ Isolation via Inner Detector only or with also Calorimeter-based cuts
- Different scenarios for muon spectrometer standalone (first data) and combined measurement
- QCD background need to be estimated from data
 - ★ QCD enriched sample (like-sign) and normalization to signal selection from MC
- Background uncertainty expected $\approx 0.2\%$

- \odot Next analyses will be based on release $13.0.X\ AOD$
 - \star samples are produced in the SM quota with backgrounds from other groups
 - ***** see https://twiki.cern.ch/twiki/bin/view/Atlas/StandardModelCSCDatasets
- Analysis on **FDR 1-2** data:
 - \star unique opportunity before start to use real-like data
 - ★ FDR2: 7h of 10^{32} data (2.5 pb⁻¹) and 3h of 10^{33} data (10.8 pb⁻¹)
 - ★ see https://twiki.cern.ch/twiki/bin/view/Atlas/FullDressRehearsal
- EWPA analysis framework (Atlas cvs link for EWPA-00-00-01 version)
 - ★ Main new features foreseen for EWPA-00-01-00 (ready/indev)
 - Factorized input (ESD, AOD, DnPD) and analysis environment to the analysis code
 - User Data handling (like associations, extrapolated parameters, fit, ...)
 - Transient/Persistent (TP) separation of data classes
 - POOL persistification of analysis results with Atlas compliant TP converters
 - AthenaROOTAccess (ARA) support to perform analysis outside Athena (same analysis classes)
 - ARA/Athena Dual Tools support for common python-based configuration

$$\sigma_{V \to ll} = \frac{(N_{obs} - N_{bgk})}{\int \mathcal{L}dt \cdot \mathbf{A} \cdot \boldsymbol{\epsilon}}$$

- Acceptances for experimental selections (from MC)
- Trigger and offline efficiencies (from data)
- Signal selection and background estimation
- Integrated Luminosity

 We are also responsible for SM muon validation (bi-weekly meeting reports)
 SM Pavia analysis group is: M.B., S. Franchino, G. Gaudio, A. Negri, G. Polesello, A. Rimoldi, D.Scannicchio, V.Vercesi

- Ouring last <u>SM meeting T.Le Compte</u> reported recent news for first collisions
- This scenario assumes first collisions in August with 5 5.5 GeV beam energy and a running period of 2-3 months
 - ★ given N_p constant 10^{31} cm⁻²s⁻¹ will become about 7.5 10^{30} cm⁻²s⁻¹ (7.5 10^{-3} nb⁻¹s⁻¹)
- In the hypothesis of a 3 months (7.8 10^6 s) data recording

 \bigstar an integrated luminosity of about 50-60 $\rm pb^{\text{-1}}$

Process	σ x Br [pb]	ε(estimate)	Events in 10 pb ⁻¹
$Z \to II$	2000	20%	4000
W ightarrow Iv	20000	20%	40000
ttbar \rightarrow lv +X	370	1.5%	< 100
$Jet \ E_T > 25 \ GeV$	$3 \cdot 10^{9}$	100%	$3 \cdot 10^{10} \times \text{ p.f.}$
Minimum bias	1011	100%	10 ¹² x p.f.

• Aim of first data:

 \bigstar detector understanding/calibration and first physics measurements

Measurements of Electroweak observables

★ W,Z cross sections

- \star W mass and width, sin² θ_{eff} , A_{FB}
- W charge asymmetry A(η_l) and differential cross sections
- ★ Di-Boson productions
- ★ to search for new physics looking at invariant mass high tail,
- Single W/Z boson production is a clean processes with large cross section useful also for :
 - ★ "Standard candles" for detector calibration/understanding
 - ★ constrain PDFs looking at σ_{TOT} , W rapidity, ...
 - ★ monitor collider luminosity

10

0

50

100

150

200

250 300 Z p_t [GeV]

- Offline efficiency measured from data with Tag and Probe:
 - ★ same approach as for trigger measurements
 - ★ systematics at 0.2%

• Comparisons of muon trigger efficiency from W and Z events from MC truth (wrt to all events with at least 1 muon in trigger coverage, no off. cuts)

