



#### Relic neutrinos detection and mass measurement in the PTOLEMY project.

Seminario all'Universita' di Milano Bicocca May 28<sup>th</sup> 2025 M Messina, LNGS-INFN



## Why we believe in the Big Bang?

- 1. Expansion of Universe
- 2. Light element abundances
- 3. Cosmic Microwave Background



## Why believe Big Bang?

- 1. Expansion of Universe
- 2. Light element abundances
- 3. Cosmic Microwave Background
- 4. Cosmic Neutrino Background





## Cosmic Neutrino Background

JAMES PEEBLES NOBEL PRIZE IN PHYSICS 2019



Dicke, Peebles<sup>\*</sup>, Roll, Wilkinson (**1965**)

Cosmology's Century (2020)

Number density:  $n_v = 112/cm^3$ **Temperature**: T<sub>v</sub>~ 1.95K Time of decoupling:  $t_v \sim 1$  second ~50% of the Total Energy Density of the Universe @ 1 sec neutron/proton ratio @start of nucleosynthesis <sup>4</sup>He

<sup>2</sup>H (<sup>3</sup>He) <sup>7</sup>Li

#### Grand Unified Neutrino Spectrum



#### Where to look for $C\nu B$ ?

- or —

Is it possible to detect 0.010 eV neutrinos?

#### Induced beta decay

PHYSICAL REVIEW

VOLUME 128, NUMBER 3

NOVEMBER 1, 1962

 $m_{\nu}=0$ 

#### Universal Neutrino Degeneracy

STEVEN WEINBERG\* Imperial College of Science and Technology, London, England (Received March 22, 1962)

Modern cosmological theories imply that the universe is filled with a shallow degenerate Fermi sea of neutrinos. In the steady state and oscillating models (and perhaps also the "big bang" theories) it can be shown rigorously that the proportion of filled neutrino levels (plus the proportion of filled antineutrino levels) is precisely one up to a finite Fermi energy  $E_F$ . The proof takes into account both absorption and the repressive effects of already filled levels on neutrino emission. Experiment shows that  $E_F \leq 200 \text{ eV}$  for antineutrinos and  $E_F \leq 1000 \text{ eV}$  for neutrinos. The degenerate neutrinos could be observed (if  $E_F > 10 \text{ eV}$ ) by looking for apparent violations of energy conservation in  $\beta^-$  decay. In the steady state and evolutionary cosmologies  $E_F$  is much too low to ever be observed, but in the oscillating cosmologies  $E_F \simeq 5R_c$  MeV, where  $R_c$  is the minimum radius of the universe in units of its present radius; thus experiment already shows that the universe will contract by a factor over  $10^3$ , if at all. Astronomical evidence plus Einstein's field equation (without cosmological constant) require in an oscillating cosmology that  $E_F < 2 \times 10^{-3}$  eV (so  $R_c < 10^{-9}$ ) and suggest that higher energy neutrinos may represent the bulk of the energy of the universe. A model universe incorporating this idea is constructed.

 $n_i = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} + 1}$  $\frac{\mu}{\frac{1}{k_- T}} < 0.1$ 

Cocco, Mangano, Messina calculated in 2007 the interation cross section and the rate with  $m_v \neq 0$  case

JCAP 0706:015,2007

# **CROSS SECTIONS**

Tritium has the largest product of capture cross section and lifetime

$${}^{3}H \rightarrow {}^{3}He^{+} + e^{-} + \bar{\nu}_{e}$$
$$\bar{\nu}_{e} + {}^{3}H \rightarrow {}^{3}He^{+} + e^{-}$$



## Selection of target



## Expected rate: 100 gram-year exposure

#### JCAP 0706:015,2007

| $\overline{m_{\nu}} \; (eV)$ | $FD$ (events $yr^{-1}$ ) | NFW (events $yr^{-1}$ ) | MW (events $yrs^{-1}$ ) |      |
|------------------------------|--------------------------|-------------------------|-------------------------|------|
| 0.6                          | <sup>7.5</sup> x0.5      | <sup>90</sup> x0.5      | 150 <b>x0.5</b>         | Dira |
| $0.3 \\ 0.15$                | 7.5<br>7.5               | 23<br>10                | 33<br>12                | Dirg |

| $m_{\nu} \ (\mathrm{eV})$ | $FD$ (events $yr^{-1}$ ) | NFW (events $yr^{-1}$ ) | MW (events $yrs^{-1}$ ) |
|---------------------------|--------------------------|-------------------------|-------------------------|
| 0.6                       | 7.5                      | 90                      | 150                     |
| 0.3                       | 7.5 ·                    | 23                      | 33                      |
| 0.15                      | 7.5                      | 10                      | 12                      |

#### Majorana

JCAP 076:015, 2007 JCAP 1408 (2014) 038







#### Detection concept: Neutrino Capture on $\beta$ unstable nuclei

 Basic concept for relic neutrino detection rooted in a paper by Steven Weinberg in 1962 [Phys. Rev. 128:3, 1457]; applied for the first time, in case of massive neutrinos, to lay out a proposal for their direct experimental detection in 2007 by A.G.Cocco, G.Mangano and M.Messina. [JCAP 06(2007)015 DOI: 10.1088/1475-7516/2007/06/015]



from neutrino oscillations

**PTOLEMY** target resolution: ~ 50 meV

Before carrying on we can't miss to mention the KATRIN experiment

#### The principle of the Mac-E filter<sup>\*</sup>

Two superconducting solenoids produce a magnetic field B. The beta electrons, which are starting from the tritium source in the left solenoid, are guided magnetically on a cyclotron motion around the magnetic field lines into the spectrometer (2p solid angle).



#### The principle of the Mac-E filter (I)

On their way to the center of the spectrometer the magnetic field B drops by many orders of magnitude. Therefore, the magnetic gradient force

$$F_{grad} = (\overrightarrow{m} \cdot \overrightarrow{\nabla}) \cdot \overrightarrow{B}$$

transforms most of the cyclotron energy into longitudinal motion. Thus, because of the slowly varying magnetic field B the momentum transforms adiabatically, therefore the magnetic moment  $\mu$  that in a non-relativistic approximation is:

$$\mu = \frac{E_{\perp}}{B}$$

does not change! Condition of adiabaticity



# Features and LIMITS of the KATRIN detector

- Pros:
- Simple Filter concept
- Cons:
- Too large volume
- Poor energy resolution
- To increase sensitivity, one musts increase volume
- Collecting electron from any direction

#### New Filter concept



#### New filter concept: transverse drift



#### Kinetic energy degradation

$$\frac{dT_{\perp}}{dt} = \frac{\mu}{B^2} \boldsymbol{E} \cdot (\boldsymbol{\nabla} B \times \boldsymbol{B})$$

Prog.Part.Nucl.Phys. 106 (2019) 120-131

Once the kinetic energy is reduced high performance calorimetric measurements can be done



#### Measurement summary



- Extreme energy resolution
- New filter to cope with high rate
- Atomic Tritium on graphene support

KATRIN arXiv:2406.13516v1 [nucl-ex] 19 Jun 2024

#### PTOLEMY detector schema

PonTecorvo / PrinceTon Observatory for Light Early-universe Massive-neutrino Yield



## Full demonstrator simulation (Princeton)



#### **Transmission Simulation Setup**

- 1 mm radius circular area split into 50 rings (5 shown)
- 50 rings = 10,200 particles
- Uniform distribution of pitch θ within a 10 degree window
- 8 fixed phi  $\Phi$  emission angles
- All electrons with initial KE = 18.6 keV

```
• E.g.

\theta = 30\pm 5, \Phi = 0 (N=10,200)

\theta = 30\pm 5, \Phi = 45 (N=10,200)

...

\theta = 30\pm 5, \Phi = 315 (N=10,200)

\theta = 30\pm 5, \Phi = 0..315 \rightarrow N=81,600

\theta = 40\pm 5, \Phi = 0..315 \rightarrow N=81,600

...
```







1mm radius (5 rings)

#### Methodology

- 2D plane monitors placed every 1 cm in z
  - 11x6 cm in (x,y) centered at (0,0)
- Record individual particle hit information (incl. multiple hits per particle due to cyclotron motion)

#### At each Z coordinate:

- **Transmission efficiency:** Extract # of unique particle hits per plane, express as percentage of N
- Average KE: Take average over all hits (incl. duplicates)
- **Pitch angle:** Calculate instantaneous pitch angle from momentum components for hits within 5mm of x=0, then take average pitch over these hits





#### Showing $\theta$ = 20±5, 30±5, 40±5 averaged over $\Phi$ bin

Average over  $\phi = [0, 2\pi], N = 81600$ 



## PTOLEMY: Energy

• Energy measurement from  $\Delta V$  and calorimeter:

$$E_e = e \left( V_{cal} - V_{source} \right) + E_{RF} + E_{cal}$$

- Calorimeter energy resolution must be O(50meV)
  - 1. Transition Edge Sensors
  - 2. State-of-the-art 50 meV@100eV with photons
- Voltage stability (alias overall energy scale) better than 10-20mV
- NOTE: internal voltages are actively adjusted for each interesting electron

## Sensitivity as a function of tritium mass



#### Remarks:

the sensitivity is weakly
 dependent upon the energy
 resolution (500 meV is already a good starting point)

 1 µg is potentially comparable or even better than the projection of the best technology on the market

- 100 µg (0.5 m<sup>2</sup>) can potentially probe the neutrino mass down to the IO scenario

In preparation a theory paper on solid state effects on the electron spectrum, and consequent theory systematics on  $m_{v_{.}}$  extraction (A. Casale, A. Esposito G. Menichetti, V. Tozzini)

## Systematics



1) Theory aspects:

further understanding of e ground level is needed

https://arxiv.org/pdf/2504.13259

2) Overall energy scale know at < 10 meV

3) RF correction known at better than 10 %



9

## Overview of the R&Ds in the PTOLEMY project

- 1. RF measurement from single electron emission (LNGS/Nikhef)
- 2. Graphene loading capability (Roma1)
- 3. Graphene transmission measurement and electrostatic analyser (Roma3)
- 4. TES design optimization at National Institute of Metrology (INRiM)
- 5. Demonstrator SC magnet design and construction (LNGS/Princeton)
- 6. HV system development setting the overall energy scale (LNGS)

#### PTOLEMY Demonstrator at LNGS We aim at

Proof the capability of the new filter concept to transport the electrons from Target/source to the electron calorimeter and simultaneously select electrons in the ROI (10-100 eV around the T endpoint)

The baseline option of the demonstrator setup is (Phase-0):

- 1) Run the filter with full functionalities
- 2) Electron provided by calibration sources
- 3) Energy measurement realized by means of a standard Silicon Drift Detector

In a second step (Phase-1, 2027-) we aim at exploiting the features of Transition Edge Sensor (TES) calorimeters with the targeted energy resolution and start to use T loaded graphene

# Assembly of the DEMONSTRATOR



## PTOLEMY: tritium target

#### • Use atomic <sup>3</sup>T

- No ro-vibrational modes in final state like for <sup>3</sup>He-<sup>3</sup>T final state.
- Limit to energy resolution not determined by target itself
- dE/dx of electrons imposes extremely thin targets
- We investigate <sup>3</sup>T loosely bound to graphene
  - Theoretical maximum is about 0.2 mg tritium per m<sup>2</sup>







Hydrogen and Deuterium loading on graphene and nano-porous graphene at Roma3

#### atomic H as a tool to '*pinch*' the sp2 bonds towards an sp3 configuration while maintaining the planar nature of graphene



sp3 H-C bond

how to estimate the H (or D):C upload → directly from a quantification of the sp3 bond spectroscopic signal from the XPS C 1s core level:

$$H/C = I_{sp3} / (I_{sp3} + I_{sp2}) = \Theta$$





method: atomic H at ~0.2 eV kinetic energy by hot-capillary in vacuum



FIG. 1. Schematic drawing of the atomic hydrogen source.

 $H_2$  flow into a capillary with hot-spot (~2000 C) in UHV → more than 95% molecules cracked in **atomic H** concentrated onto the sample

Bischler and Bertel, J. Vac. Sci. Technol. A 11, 458 (1993)


Betti et all, Nano Lett. **22**, 2971 (2022)

# T-loading setup in Roma1

we need a lab. capable to deal with T gas system tested with H<sup>2</sup>

#### **T-chamber R side view**



Quadrupole Mass Spectrome SRS RGA 100

#### **T-chamber L side view**



Scroll Pump: Leybold SCROLLVAC SC 15 D

# Single electron RF emission detection

- Aim:Detect single electron RF emission signal @ 27 GHz at low intensity (~ 1 fW)in a relatively short time (hopefully below 100 μs)
- Purpose(s): First measurement of this kind in the PTOLEMY Collaboration First step toward the demonstrator Key steps to build the GANTTChart for funding agencies
- Setup: Permanent magnet (1 Tesla field) hosting an "electron trap"

### RF detection setup at LNGS: electron trap



### Electron cyclotron RF radiation studies



### Candidate electron events

RF emission frequency vs time of single electron in the permanent magnet



### Electron signature: trigger rate (data)



### Recent Project 8 Tritium RF Measurement



RF measurement background levels extremely low.

No events observed above endpoint, Setting upper limit on background rate

< 3x10<sup>-10</sup> /eV/s (90% CL)

→ Background Rate < 1 event per eV in 100 years!

https://arxiv.org/abs/2203.07349

# **RF** readout electronics





RTO64 used for DAQ

**Dedicated downconverter** developed @ NIKHEF

DAQ with FPGA trigger under development @ NIKHEF

#### A special Magnet

Being rebuilt in a larger size and will be installed at the LNGS Key elements to realize the transverse drift and the Demonstrator of the PTOLEMY project



Construction ASG/Suprasys consortium of a SC dipole with special attention to the fringe field







Eβ

### Electron Transport: RF pickup & Filter

#### **PTOLEMY filter: years of development**

10<sup>5</sup>

Particle trajectories can be calculated/predicted analytically

motion



A design for an M.G.Betti et al, I

Prog.Part.Nucl.Phys

106

(2019) 120-131

gnetic filte

r for precision energy

endpoint

#### Demonstrator parts under constructions: magnet, order issued

Magnet: Key subsystem

ASG (Genova)/Suprasys(Bilbao) Õ 00 è 0.0 0 3513.8

Magnet commissioning by summer





### Demonstrator parts under constructions: vacuum chamber



#### 

100x100 µm

 $\sim 100$  mK cold bath (refrigerator)

SiN<sub>X</sub> 500 nm Thermal bath

20x20 μm

50x50 μm

C. Pepe, E. Monticone, M. Rajteri

Mauro Rajteri, Eugenio Monticone and others, <u>https://doi.org/10.1007/s10909-019-02271-x</u> "TES Microcalorimeter for PTOLEMY", J. Low Temp. Phys. 199 (2020) 138-142.

## Calorimetry at INRiM



Based on the expertise of the INRiM electron detection with TES! Key elements: high quality TES and new e-source based on nanotubes



**Now:** 0.11 eV @ 0.8 eV and 106 mK and 10x10 μm<sup>2</sup> TiAuTi 90nm [Ti(45nm) Au(45nm)]<sup>(τ ~137 ns)</sup>

Design Goal (PTOLEMY):  $\Delta E_{FWHM} = 0.05 \text{ eV} @ 10 \text{ eV}$ translates to  $\Delta E \propto E^{\alpha} (\alpha \leq 1/3)$  $\Delta E_{FWHM} = 0.022 \text{ eV} @ 0.8 \text{ eV}$ 



Phys.Rev.Applied 22 (2024) 4, L041007

First measurement of electrons at 100 V with a resolution ~1-1.5 eV

#### Alternative energy measurement Electrostatic electron analyser



# **Commercial Electron analyser**

#### from Scientaomicron



| Energy resolution              |                                                                                                                                        |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                | < 40 meV FWHM at 6 kV                                                                                                                  |
|                                | < 100 meV FWHM at 10 kV                                                                                                                |
| Transmission mode energy range | 5 eV – 10 000 eV                                                                                                                       |
| Angular modes                  | ± 22°, ± 30°                                                                                                                           |
| Angular mode energy range      | 100 eV – 10 000 eV                                                                                                                     |
| Deflection mode energy range   | -                                                                                                                                      |
| Deflection mode Spin scan      | -                                                                                                                                      |
| Operating pressure             | < 10 <sup>-5</sup> mbar                                                                                                                |
| Mounting flange                | DN200CF (10" O.D.)                                                                                                                     |
|                                | For full specifications and more information about product options, please do not hesitate to contact your local sales representative. |
|                                | Find the contact details here: Contact Us                                                                                              |
|                                |                                                                                                                                        |

# HV High precision stability (LNGS)











Damas Caratan

Single ₅board (1 kV)

 $\sigma = 0.3 \text{ mV}$ 

# To Conclude

A message to young researchers that are considering to join this project

The PTOLEMY project is very challenging, and we have a long way in front of us.

However, there are so many import and interesting results that we can gain, while pushing further the knowledge, that makes the path more as interesting as the final goal.

We aim at showing the demonstrator functioning at LNGS by next year

Contact: marcello.messina@lngs.infn.it; web: https://ptolemy.lngs.infn.it/

# BACKUP

### 1. Neutrino wind – coherent scatter

- Velocity of solar system w.r.t CMB frame  $\beta \approx 10^{-3}$
- Coherent Acceleration  $\sigma_{
  u N} \propto G_F^2$ 
  - ✓ De Broglie  $\lambda \approx 2 3$ mm

✓  $a_{NR-D/M} = O\left(10^{-27} \frac{cm}{s^2}\right)$  for non-relativistic neutrinos

 $a \approx 10^{-13} cm/s^2$  achieved so far



... and worry about solar  $\nu$  and WIMP backgrounds

# 2. Cosmic neutrinos

• Interact with high energy  $\nu$ :

$$E_{\nu_i} \approx 4 \cdot 10^{21} \left( \frac{eV}{m_{\nu_i}} \right) eV$$

- Signature:
  - 1. Dip of high energy  $\nu$  flux
  - 2. Exces of high energy  $\gamma$ , proton flux



# PTOLEMY Demonstrator at LNGS: filter electrodes prototype



#### First Version of the PTOLEMY magnet



#### SIMONS FOUNDATION

# Ways to solve?

#### **Strategy 1:** find other target material



from Mendeleyev et al

#### Strategy 2: alternative <sup>3</sup>H storage





from A. Esposito







# World-record TES calorimeter 50 meV resolution for CNB neutrinos



C. Pepe, E. Monticone, M. Rajter

# Funding:

- CSN2 (2018-2021): 205 kE
- CSN5 (2022-): 50 kE
- Call of the "Agenzia per la coesione territoriale", participation as partner of a bigger LNGS project on metal 3D printing. 400 kE out of 2ME for the PTOLEMY project (First in the ranking but not yet delivered). This 300 kE will be dvoted to the of the SC demonstrator magnet. 100 kE for research contract.
- PRIN2022: Proposal for a budget of 250 kE mainly to run demonstraor. Waiting for the answer.
- Dutch Research Council (NL) (2021-): 1.3 million Euro Research Grant of "One Second after the Big Bang" The topic of the grant is "RF antenna design and large scale readout chain implementation." LNGS is a partner in this grant. One PhD position is awarded and one PostDoc, 60% based at LNGS with 100 kE budget, are foreseen.
- Princeton Univ., Simons and Templeton Foundations (2016-): 1 M\$ from J Templeton Foundation and 1.3 M\$ from J Simons Foundation out of which 0.75 M\$ will go in TES development and demonstrator running.

With this financial plan, even though with have some uncertainty, we are sure to be able to accomplish Pahse-0: running the new filter and measure the end to end electron transfer function from target to the measuring point where electron energy will be measured by means of an SDD. Then endpoint measurement of T loaded on graphene will follow.

# Bobsledding (pushing electron up potential)



Transverse "Selector" (one channel) Dynamically Adjusted (side channels) to Total Energy "Selector"

## Data set at 10000 V Intrinsic diode resolution



σ(intrisic) = sqrt(10) x 0.3 ~ 1mV (<< 50 mV !!!)
The intrinsic resolution is way better than the present measurement method!!!</pre>

### Conduction Cooled Superconducting Coils

- LNGS magnet specifications within ~20% of an Open MRI system made by ASG/Suprasys (about 10 commercial systems delivered per year)
- Order issued, concept design frozen and the construction phase has started



Packed with multi-layer thermal insulation



SC coils magnet

# Sample preparation: graphene growth and transfer on TEM grid



Mono-/tri- layer graphene on nickel TEM grid:

- G2000HAN Ted Pella Inc.
- 2000 mesh per inch  $\rightarrow$  12.5  $\mu$ m pitch
- 💠 Hole width 6.5 μm
- Nominal geometrical transmission 41%



#### The LASEC experimental layout (Roma3)



- Al K $\alpha$  source:
- ✤ hv = 1486.7 eV
- Resolution 0.35 eV
- Analyser wf = 4.3 eV
- Tot resolution = 0.46 eV

Custom-made monochromatic electron gun:

- Continuous electron beam
- Tuneable energy 30 900 eV
- Resolution = 45 meV

#### Transmission through mono- and tri- layer graphene

 $\frac{I_{NOG}}{I_0} \longrightarrow \text{grid without graphene}$ (i.e. geometrical transmission)

Nominal geometrical transmission

#### 41%

 Uncertainty 1.7% (not shown ~same size of the dots)



 $\frac{I_{xLG}}{I_0 \cdot 0.39}$   $\rightarrow$  grid with graphene (net of the 39% grid transparency)



1

# **QUANTUM SPREAD**

#### Distributing tritium on flat graphene has one drawback



#### Slide by Angelo Esposito at NuMass 2022

# **PTOLEMY Concept simulation**


#### • [ Tra

| Sport Colls                                                                                                    | 1. 1. 1. 1. | Roll in and       |                  |                          | The second second | THE REAL              | La co   |         |              |              |                                       | 2 2 2                                                                                                          |                                           |       |          |
|----------------------------------------------------------------------------------------------------------------|-------------|-------------------|------------------|--------------------------|-------------------|-----------------------|---------|---------|--------------|--------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|----------|
|                                                                                                                |             | State Technologie | Contractory      | <b>→</b> →→→             | ►→⇒→              | ***                   | 1 1     |         |              |              |                                       |                                                                                                                |                                           |       |          |
|                                                                                                                |             | and the state     | <b>Mamminton</b> | <b>Roka Roka</b>         |                   | ****                  |         | 1       |              | • • • •      |                                       |                                                                                                                |                                           |       |          |
|                                                                                                                | 1.6221      |                   | * * * *          | * * * * *                |                   | <u> </u>              |         | 1       |              |              | s                                     | 1                                                                                                              |                                           |       |          |
|                                                                                                                |             |                   |                  | 5 5 5 F                  |                   | * * * *               | 11 1    | A + -   |              |              | S 1 - 1 - 1                           |                                                                                                                |                                           |       |          |
|                                                                                                                |             |                   | +                | • • • •                  |                   | * * * 4               | - ¥ ¥ ¥ | - + +   |              |              | 5 - E - E                             | ÷ 0 - 0                                                                                                        | 4                                         | a a 💡 |          |
|                                                                                                                |             |                   |                  |                          |                   |                       | . * * * | × * *   | × × ×        |              | × × + +                               |                                                                                                                |                                           |       |          |
|                                                                                                                | 1           |                   |                  | ••••                     | * • •             | * * * *               | +++     | * * ×   | * * *        | · · · ·      | $\sim \sim \sim \sim$                 | N 2 2 4                                                                                                        | 199<br>1                                  | 134   | S.       |
|                                                                                                                | A           | A                 |                  |                          |                   | * * * *               | * + +   | * * *   | 12.00        |              | • • • •                               |                                                                                                                |                                           |       |          |
|                                                                                                                | A + + + /   | A x x x           |                  |                          |                   | * * * *               | * * *   | • • ×   | * * *        |              | x                                     | 1. A. 1. A. A.                                                                                                 | 1. N                                      |       | - 10     |
|                                                                                                                |             |                   |                  |                          |                   |                       | * * *   | * * *   | 1. 2. 3      | ×            | 2 - 2 - 2 - 2                         | 10 X - 10                                                                                                      | 6.50                                      |       | 82.      |
|                                                                                                                |             |                   |                  |                          |                   |                       | + + +   |         | 1. 4. 1      | 3 3 4        | 5 - F - F                             | 19 10 19 19 19 19                                                                                              | 1. A. |       |          |
|                                                                                                                |             |                   |                  |                          |                   |                       |         |         | N 1 1        | • • •        | 1.1.1.1.1                             | a 10 a 10 a                                                                                                    | 2                                         | 3     |          |
|                                                                                                                | 1 + 4 + 4   |                   |                  |                          |                   |                       |         | * * *   | <b>F F F</b> | 1.1.1.       |                                       |                                                                                                                |                                           |       | 10       |
|                                                                                                                | 1 1 1 1 1 1 | 5 3 3 4           |                  |                          |                   |                       |         | + + +   |              |              | · · ·                                 |                                                                                                                | · · · ·                                   |       |          |
|                                                                                                                | 1 + + + + + | 4 4 4 4           | 4 4 4 A          | e a la la la             |                   |                       |         |         |              | • • •        | 1.1.1.1.1.                            | 1 N. 1                                                                                                         |                                           |       |          |
|                                                                                                                | ++++        | 4 8 8 8           |                  |                          |                   |                       |         |         |              |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                | · · · · ·                                 | • • • | 1        |
|                                                                                                                | 1111        | 1×× ···           |                  |                          |                   |                       | 4 4 4   | 4 4 4   |              |              |                                       |                                                                                                                | •                                         |       |          |
|                                                                                                                |             |                   | * * * *          |                          |                   |                       | 5 5 2   | 200     | 227          |              |                                       | State of the second | CP WW CONTROL                             |       |          |
|                                                                                                                | 1 由十有国      | ****              |                  | e de la <sub>le le</sub> |                   |                       | 221     | 811     |              |              |                                       |                                                                                                                |                                           | S 5 5 |          |
|                                                                                                                | 1 1 1 1     | ****              |                  |                          |                   |                       | 222     | 200     |              |              |                                       | · · ·                                                                                                          |                                           |       |          |
| A State                                                                                                        | 1 21 11     |                   |                  |                          |                   |                       | 511     | ***     |              |              |                                       |                                                                                                                |                                           |       |          |
|                                                                                                                | 1111        |                   | · · · · ·        |                          |                   | 1 1 1 1               | 4 6 6   |         |              | 120 20 20 20 |                                       |                                                                                                                | St 13                                     |       |          |
|                                                                                                                |             |                   | ****             | * * * * *                | <u></u>           | - 1/                  | 111     |         |              |              |                                       |                                                                                                                |                                           |       |          |
| Statement of the second se | · · · •     |                   |                  |                          |                   |                       | 1       |         |              |              |                                       |                                                                                                                |                                           |       | 20.05 50 |
|                                                                                                                |             |                   |                  |                          |                   |                       | 1 1     | X X X   |              | a            |                                       |                                                                                                                |                                           |       |          |
| and an                                                                     | the set     |                   |                  |                          |                   | and the second second |         |         |              |              |                                       |                                                                                                                |                                           |       |          |
|                                                                                                                | 1 / / r f   | 1                 | * * * * *        | • • • •                  |                   |                       |         | 2. 2. 5 |              | na na na     |                                       |                                                                                                                |                                           |       | 1        |

1

. . . . . .







V.s/m^2 0.2

Energy 101/101 403.762 ns 36260.9 eV 0.670033 eV

(The

## **Electromagnetic Filters**



## **Electromagnetic Filters**



### Preliminary RF signal FFT analysis (CST)



time (samples)

freq

## **QUANTUM SPREAD**

### Distributing tritium on flat graphene has one drawback



#### Slide by Angelo Esposito at NuMass 2022

# QUANTUM SPREAD

Distributing tritium on flat graphene has one drawback •

spatially localized tritium



tritium's momentum

spread in final electron energy

[Cheipesh, Cheianov, Boyarsky - PRD 2021, 2101.10069]

• A simple semi-classical estimate:

energy and momentum conservation returns fluctuating momenta  $\Delta E_e \simeq \left| \frac{\mathbf{p}_e \cdot \mathbf{\Delta} \mathbf{p}_T}{E_{He}} \right| \sim \frac{p_e}{m_{He} \mathbf{\Delta} x_T} \sim \frac{0.6 - 0.8 \text{ eV}}{1}$  $\mathbf{p}_T = \mathbf{\Delta} \mathbf{p}_T$  $\mathbf{p}_{He} = \mathbf{p}_{He} + \Delta \mathbf{p}_{He}$  $\mathbf{p}_e = \mathbf{\overline{p}}_e + \Delta \mathbf{p}_e$ an order of magnitude spread of initial tritium wave larger than the wanted function ( $\Delta x_T \sim 0.1$ Å) energy accuracy

## **QUANTUM SPREAD**

PTOLEMY Collaboration, A. Apponi et all, DOI: <u>10.1103/PhysRevD.106.053002</u>

#### • The resulting rate is



Collaboration with Savannah River National Laboratory for Tritium Loading CNT, NPG, CVD-G, and De-localized Atomic T Geometries ~2Å flat potential – not chemically active

