Laura Zani: laura.zani@roma3.infn.it

Roma Tre – Seminar cycle for PhD

DARK SECTORS AND WHERE TO FIND THEM

Today's Highlights

- Why dark matter?
- Why dark sectors?

DISCLAIMER: I am not a theorist...

- How to search for dark sectors?
 - Focus on searches at B-factories
 - Beyond minimal dark sector searches

Evidences for dark matter

• Many astrophysics and cosmological observations provide evidences for Dark Matter (DM) existence:

\rightarrow DM gravitates

Evidences for dark matter (II)

• Many astrophysics and cosmological observations provide evidences for Dark Matter (DM) existence:

Gravitational Lensing

 \rightarrow it's dark (doesn't interact electromagnetically)

Evidences for dark matter (III)

• Many astrophysics and cosmological observations provide evidences for Dark Matter (DM) existence:

Cosmic Microwave Background anisotropies (from Planck satellite data)

\rightarrow stable on cosmological scales

A large amount of not-luminous matter must populate galaxy bulks.

Roma Tre, PhD course 2025

L. Zani - Dark sectors searches at colliders

... or incomplete understanding of gravitation?

MOND theories refer to a correction of Newton's law that take into account a scale factor

F

The correction is very simple:

$$=\frac{GM}{r^2}f(\frac{r}{r_0})$$

and

$$r_0 = few \times kpc$$

$$f(x) = 1(x \le 1)$$

$$f(x) = x(x \gg 1)$$

MOND theories are then parametrised by only one free parameter: mass-to-light ratio

The agreement between predicted rotation curves with MOND and observation is astonishing

\rightarrow could explain 1 out of 3 evidences: it fails on the cluster scale and on observed lensing and anisotropy effects

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Dark matter puzzle

DM exists (not 100% accepted conclusion)...

but DM origin and nature is still unknown:

- I. Modified Newtonian Gravity (MOND) may not require DM
- II. Something completely different and unexpected (not-particle DM candidates)

 \rightarrow Massive Astrophysical Compact Halo Objects (*MACHOs*): highly condensed object as neutron stars, brown and white dwarfs, **primordial black holes** [arXiv:1906.05950]

III. Exotic subatomic candidates: similarly to the SM, *dark sectors* with new particles content may exist

 \rightarrow postulate particle-like nature

Dark matter particle candidates

DM candidate prerequisites:

- average velocity of a self-gravitating sphere <v>~ 235 km/s (assumed Boltzmann distribution)
- Cold, non-relativistic candidate and stable
- Only very weakly interactions (*dark*)
- Provide the right *relic density*

experimental input from cosmological observation.

- Neutrinos: relativistic (hot) candidates
- Sterile Neutrinos: cold DM that may explain the neutrino masses problem
- Weakly Interacting Massive Particles (WIMPs): match new particle candidates from supersymmetric models (*neutralino*)
- QCD Axions: Peccei-Quinn solution to QCD fine-tuning problem

Weakly Interacting Massive Particles (WIMP)

• Dominant model for more than three decades, assume thermal equilibrium in early universe between SM particles (f) and DM (χ)

$$n_{\rm DM}^{\rm (eq.)} = \int \frac{d^3 p}{(2\pi)^3} \frac{g_i}{e^{E/T} \pm 1} \sim T^3$$

Weakly Interacting Massive Particles (WIMP)

- → As the universe expands, the DM number density is exponentially suppressed as e^{-m/T} → no more DM annihilations are possible
- → DM abundance is frozen at the relic density: $<\sigma v > = 10^{-26}$ cm³s⁻¹

Thermal relic density: *freeze out* mechanism

The WIMP "miracle"

- → As the universe expands, the DM number density is exponentially suppressed as $e^{-m/T} \rightarrow no more$ DM annihilations are possible
- DM abundance is frozen at the relic density: $\langle \sigma v \rangle = 10^{-26}$ cm³s⁻¹
- * Any weak-scale particle $\sim O(100 \text{GeV})$ freezes out at the correct cross section \rightarrow WIMP "miracle"

Thermal relic density: freeze out mechanism

BUT...more recent constraints exclude vanilla WIMP models

Roma Tre, PhD course 2025

Dark matter mass scale

• We do not know the DM mass scale

strategies and techniques

Dark matter and dark sectors

strategies and techniques

• We do not know the DM mass scale

Dark matter detection

How to search for it?

1) Detect the energy of *nuclear(electron) recoil*

2) Detect the *flux of visible particles* produced by *DM annihilation, decays* or *conversions*

3) If DM weakly couples to SM it can be produced in SM particles annihilation at accelerators (colliders, fixed-target experiment)

Roma Tre, PhD course 2025

L. Zani - Dark sectors searches at colliders

Principles of direct detection

<u>Disclaimer</u>: direct searches not treated in this seminar

• For more details interesting (though older, 2017) review here

Type of detectors:

- · Liquid gas (2-phase)
- Cryogenic detectors
- Scintillation
- Bubble chambers...

Type of interactions:

- · Collisions with atomic nuclei
- Elastic scattering
- Low energy recoil

Direct detection (weak) bounds

• Lower energy thresholds for the scattering recoil allow to access masses above GeV scale

 despite the WIMP miracle, null results from direct searches disfavor this hypothesis;

What remains? Sterile neutrinos, could explain relic abundance and neutrino masses...and *light dark sectors*

Dark sectors beyond dark matter

- Not only to explain DM....Dark sectors arise from different open issues in SM
 - Theories addressing hierarchy problem (supersymmetric next-to-minimal BSM)
 - Theories explaining baryon-antibaryon asymmetry
 - Explanation of neutrino masses
 - Possible explanation of observed **anomalies in experimental data** (e.g. $(g-2)_{\mu}$, rare B meson decays)

\rightarrow signatures similar to dark matter searches

A very "simple" possibility

consider not a photon...

but a "massive" or "dark" photon: A'

- mediates a new force
- weakly coupled to electrically charged matter
- focus on mass of $A' \sim 1 \, \mathrm{MeV} 1 \, \mathrm{GeV}$

 \rightarrow A' may explain the observed $(g_s-2)_{\mu}$: contribution depends only on ε and $m_{A'}$

A' contribution is: $(g_s - 2)^{A'}_{\mu} \simeq \frac{\alpha}{2\pi} \times \epsilon^2 \qquad (m_{A'} \ll m_{\mu})$ $\simeq 10^{-3} \times \epsilon^2$

SM/data discrepancy $\sim 10^{-9} \rightarrow \varepsilon \sim 10^{-3}$

Minimal dark sector models

Simplest formulation

• Postulate a new force under which SM particles are neutral. They feel its existence through the mixing between the new force mediator and SM gauge interactions

Light dark sector portals

- DM-SM thermalization requires new *portal* interactions \rightarrow motivates the search for light dark sectors mediator (ϕ)

L. Zani - Dark sectors searches at colliders

Light dark sectors

• Within allowed SM symmetries, 3 possible renormalizable portals with dimensionless couplings

+ a not-renormalizable pseudo-scalar portal assuming Axion-Like Particles (ALPs) as mediators:

Experimental thermal target

• For thermal DM production via freeze-out not too small coupling is required

 \rightarrow SM weakly coupled to dark sector, possible searches at collider

Possible thermal targets

Mainly two classes of thermal DM:

One (or more) particles of the dark sector are lighter than DM

SM annihilation

Possible thermal targets

Mainly two classes of thermal DM:

 Relic abundance regulated by x as a function of the DM candidate mass

Possible thermal targets

Mainly two classes of thermal DM:

Vector portal: dark photons

- Dark sectors are more generic than light DM and a priori unconstrained in their structure
- Usually they contain at least a new U(1) gauge group with an associated spin-1 massive boson A' \rightarrow the **dark photon**
- Interaction with the SM particles are mediated by the kinetic mixing with the SM photon with a strength ε:

$$\mathscr{L}_{A',\gamma} = \frac{\epsilon}{2} B_{\mu\nu} F'^{\mu\nu},$$

$$\mathcal{L} = -\frac{1}{4} V_{\mu\nu}^2 - \frac{\kappa}{2} V_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi),$$

This Lagrangian describes an extra U(1)' group (dark force, hidden photon, secluded gauge boson, shadow boson etc, also known as U-boson, V-boson, A-prime, gamma-prime etc), attached to the SM via a vector portal (kinetic mixing). Mixing angle κ (also known as ε , η) controls the coupling to the SM. New gauge bosons can be light if the mixing angle is small.

[Holdom, paper]

Summary 1.0

- Astrophysical and cosmological observations and particle physics measurements might point out the **existence of a new GeV scale force** weakly coupled to the Standard Model through kinetic mixing
- In the **simplest formulation**, there is only one new particle, the **dark photon**, and **two parameters**: *mass* and *mixing* with the SM
- In the **next-to-simplest formulation**, we gain one additional particle, a **dark Higgs**, which provides mass to the dark photon through the "usual" Spontaneous Symmetry Breaking mechanism
 - Here the simplest assumption is that **dark matter is heavier** than the dark photon (secluded DS), decays of dark photons to dark matter are kinematically prohibited, $m_{A'} < 2m_x \rightarrow$ dark photon is compelled to decay to SM light particles as *electrons, muons, pions* and few others, depending on its mass (visible decays)

Summary 1.1

- Take home messages:
 - \rightarrow 1. search for DM and dark sectors well motivated
 - \rightarrow 2. relatively simple models producing observable signatures

 \rightarrow 3. heavy DM hypothesis defined the experimental activity of the past decades in searching for visible dark photons

- Phenomenological consequence of simplest DS: may look for dark photons replacing SM photons paying factor ε^2
- If give up with heavy DM and assume DM lighter than dark photon exists,
 - [–] V \rightarrow SM SM highly suppressed ($arepsilon^2$)
 - $^-$ V \rightarrow DM DM is allowed, possible to look for $invisible \ decays$ of dark photon

Search methods and experimental facilities

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Light dark sectors at accelerators

- Three main ways to experimentally search for dark forces at accelerators:
 - e⁻e⁺ collisions
 - rare meson decays (wherever produced)
 - Fixed target experiments (e^- , e^+ , proton beams)

 \rightarrow Only some fixed target experiments were designed explicitly for the dark photon search...

Roma Tre, PhD course 2025

Experimental setup

 High Resolution Spectrometers (HSR) with excellent angular and momentum resolutions + PID capability

 \rightarrow search for a peak in the reconstructed

spectrum of e^+e^- invariant mass ($m_{A'}$)

$$=\sqrt{m_1^2c^4 + m_2^2c^4 + 2(E_1E_2 - |\vec{p_1}||\vec{p_2}|c^2\cos\theta_{12})}$$
Positron enriched environment

- Secondary positrons in EM showering contribute to the total A' yield with the non-resonant (b) and resonant (c) annihilation processes
 - → **resonant annihilation** is enhanced! May exploit *positron beams* (**PADME** experiment at Frascati, docu)

Light DM at fixed target

- Possible to **detect light DM χ** at e⁻ beam dump experiment:
 - [–] dark photons produced radiatively through A'-strahlung and secondary positron annihilation, A' $\rightarrow \chi\chi$
 - Detect elastic scattering on electron/nucleon

→ Beam Dump eXperiment @Jefferson Lab, docu

Roma Tre, PhD course 2025

DISCLAIMER

- Not treated here: limits on dark photon production in $\pi^{\scriptscriptstyle 0}\to\gamma A'$ processes from kaon beams

References: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.095024 and on **NA48/2 experiment @CERN**: here

• Complete the exploration of the ε - m_{A'} phase space to eventually rule out the g-2 region (see next slide)

• REMINDER:

- [–] No signal \neq no results!
- No signal → set an upper limit on the maximum possible cross section consistent with lack of any observation (*statistical interpretation* of results)

Dark photons constraints

DISCLAIMER (II)

Dark photon production in e⁺e⁻ collisions

At low-energy, high intensity colliders (BaBar, Belle, KLOE..) production might be enhanced

Belle II experiment at SuperKEKB

• Clean environment at asymmetric energy e^+e^- collider $+ \sim$ hermetic detector:

 \rightarrow at $\surd s$ = 10.58 GeV: $\sigma_{_{bb}} \sim \sigma_{_{\tau\tau}} \sim$ 1 nb, B & τ , charm factory

 \rightarrow known initial state + efficient reconstruction of neutrals ($\pi^{_0},\,\eta),$ recoiling system and missing energy

Accumulated ~0.6 ab⁻¹ and unique energy scan samples during run 1 (2019-2022) and run 2 (2024 - present)

Dark sectors searches at Belle II

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Main experimental requirements

- Many models proposed, possibly very small couplings
- Profit from known initial state in e⁺e⁻ **collision** + quasi-hermetic detector to investigate all possible signatures

Main experimental requirements: triggers

- Specific low-multiplicity triggers: single track/muon/photon (previously not available at Belle)
 - **GOAL:** suppress high-cross section QED processes O(1-300 nb), without killing the signal < O(10 fb)

Searches for invisible decays of new mediators

Why shall we look for an invisible Z'?

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Muonic dark forces

- New gauge boson Z' coupling only to the **2nd and 3rd** generation of leptons ($L_{\mu}-L_{\tau}$ symmetry): $\mathcal{L} = \sum \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell$
 - If lighter accessible DM exists, Z' could decay to DM
 - May explain: DM abundance, $(g-2)_{\mu}$ and flavor anomalies
- Search for the process: $e^+e^-
 ightarrow \mu^+\mu^- Z'$

Example:

^{z'} → invisible (2018)</sup> Muonic dark forces: previous results

- Existing limits on the Z' coupling (g'):
 - [–] searches for visible decays Z' \rightarrow µ⁺µ⁻ (BaBar *arXiv:1606.03501*, CMS *arXiv:1808.03684*)
 - neutrino-nucleus scattering processes (neutrino trident production, CCFR experiment at Fermilab)

Search for Z' to invisible

- Invisible signature investigated for the first time: $e^+e^- o \mu^+\mu^- Z', Z' o invisible$
- Search for a peak in the mass spectrum of the recoil against a μ⁺μ⁻ pair in events where NOTHING else is detected.

 $e^+e^- \rightarrow \mu^+\mu^- + missing \, energy$

Shuve et al. [arXiv:1403.2727] Altmannshofer et al. [arXiv:1609.04026]

 $\begin{array}{|c|c|c|} & \textbf{Branching ratios:} \\ & M_{\textbf{z}}, < 2M_{\mu} \rightarrow \Gamma(\textbf{Z}' \rightarrow \text{inv.}) = 1 \\ & 2M_{\mu} < M_{\textbf{z}}, < 2M_{\tau} \rightarrow \Gamma(\textbf{Z}' \rightarrow \text{inv.}) \sim 1/2 \\ & M_{\textbf{z}}, > 2M_{\tau} \rightarrow \Gamma(\textbf{Z}' \rightarrow \text{inv.}) \sim 1/3 \end{array}$

• If lighter DM is accessible $(m_{\chi} < m_{A'}/2)$, BR $(Z' \rightarrow \chi \overline{\chi}) = 1$ and SM final states are highly suppressed.

Backstage: building the analysis performance

Roma Tre, PhD course 2025

Trailer: the plot

L. Zani - Dark sectors searches at colliders

Example: $Z' \rightarrow invisible (2018)$

BLIND ANALYSIS: the recoil

mass spectrum is kept hidden until the finalization of the analysis procedure to prevent experimenters' bias.

Analysis overview

- 1) Event Selection: reconstruct the recoil against two muon tracks in events where nothing else is detected
- 2) Background suppression and analysis optimization: general selections against radiative QED processes + dedicated suppression procedure for $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ events
- **3)Signal study:** extract the width of the simulated signal peak and compare to recoil mass resolution measured on data
- **4) Data validation:** results on simulation must be compared to data, using signalfree control samples to avoid any unintentional *unblinding*
- 5) Detector performance studies: compute efficiencies on data and assign systematic uncertainties
- **6)Signal yield extraction** by applying a Poisson counting experiment technique per each recoil mass bin and **upper limits computation** in a Bayesian approach

UNBOXED: look at observable in data!

Data sets

- Use large simulated Monte Carlo (MC) samples for:
 - compute signal efficiency and expected yields

Process	$N_{\rm evts}$ [10 ⁶]	$\int Ldt \; [{\rm fb}^{-1}]$	Reference
$e^+e^- o \mu^+\mu^-(\gamma)$	65	56.621	KKMC 80
$e^+e^- \to \tau^+\tau^-(\gamma)$	36.8	40.044	KKMC
$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$	140	7.406	AAFH 83
$e^+e^- ightarrow \pi^+\pi^-(\gamma)$	210	1372.539	PHOKHARA 84
$e^+e^- \rightarrow e^+e^-(\gamma)$	60	0.198	BabaYaga@NLO 82
$e^+e^- \rightarrow e^+e^-e^+e^-$	260.6	6.562	AAFH 83

 \rightarrow Simulate also signal processes, with dedicated generator(MadGraph5)

- Actual data needed to:
 - validate the analysis procedure
 - measure detector efficiencies and systematic uncertainties
 - extract the final results (by comparing yields in data to expected)

- → CAVEAT: simulation might be missing/ incomplete, mis-model the data
- \rightarrow Some detector effect not simulated

How would a dimuon event look like? Exploit the "event display"...

Roma Tre, PhD course 2025

Event selection

Signature: "peak in the recoil against a $\mu^+\mu^-$ pair in events...

...where nothing else is detected"

Apply experimental requirements and constraints

- Two tracks from the interaction consistent with muons \rightarrow *dimuon candidate*, within fiducial ECL barrel region
- CDC trigger line fired in data and mimic the trigger selection in simulation

- no ECL cluster within 15° cone with respect to the reconstructed recoil momentum (closest photon veto)
- no reconstructed π^0 candidate = {two photons with invariant mass in the range of known pion mass [125-145] MeV} (π^0 veto)
- no energy deposited in the ROE (extra energy veto)

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Example: $Z' \rightarrow invisible (2018)$

Background rejection

Background from QED processes that can mimic the final state of two muons + missing momentum because of acceptance or undetected particles:

- 1) Identify background source and study signal features
- 2) Devise a method to optimally discriminate:
 - \rightarrow cut-based or multivariate methods; figure of merit;...

- $e^+e^ightarrow\mu^+\mu^-(\gamma)$,
- $e^+e^-
 ightarrow au^+ au^-(\gamma)$, $au
 ightarrow \mu
 u
 u$
- $e^+e^-
 ightarrow \mu^+\mu^-e^+e^-$

- * affects the low mass range $M_{\text{rec}} < 3 \text{ GeV}$
- $^{>}$ Dominant contribution in the recoil mass range \sim 3-7 GeV
- $^{\diamond}$ Affects high mass spectrum $M_{\rm rec}>7$ GeV where sensitivity is also limited by the decreasing production cross section (1/s)
- Selections optimization by maximizing the *Punzi figure of* merit in each recoil mass bin.

$$FOM_{Punzi} = \epsilon/(a/2 + \sqrt{B}), a=1.64 (90\% CL)$$

• Number of surviving events and signal efficiencies computed for each recoil mass bin

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

 \rightarrow Evaluate the selection performance on simulation

Data validation

• Impact of the selections studied on signal-free control samples in data and simulation:

• Real detector != simulated detector

 \rightarrow GOAL: Estimate the **discrepancy** in detector efficiencies and resolutions between data and simulation, and based on this measurement:

- > correct the simulation for additional effects observed in data
- > assign a systematic uncertainty due to the applied corrections

...for the Z' analysis, three main contributions affect the selection efficiency:

- Trigger selection
- Track reconstruction efficiency
- Particle identification selection

 \rightarrow devise studies to measure the differences in efficiencies between data and simulation

Systematic uncertainties

Extract from data, uncertainty due to the statistical model (Poisson counting experiment)

Estimated from simulation

Systematic uncertainties

Extract from data, uncertainty due to the statistical model (Poisson counting experiment)

Estimated from simulation

From	other	measurement'- – -'	

Source	Affected quantity	$\mu\mu$	$e\mu$	_
Trigger efficiency	ϵ_{sig}	6%	1%	ו
Tracking efficiency	ϵ_{sig}	4%	4%	7
PID	ϵ_{sig}	4%	4%	J
Luminosity	L	0.7%	0.7%	
τ suppression (background)	B_{exp}	22%	22%	
Background before τ suppression	B_{exp}	2%	2%	\mathbf{N}
Discrepancy in $\mu\mu$ yield (signal)	ϵ_{sig}	12.5%		
				- 1

• From measured data-MC discrepancy, not associated to any known source, as systematic uncertainty in the **signal efficiency**.

Trigger, Tracking and Particle ID: from performance studies

from offline luminosity measurement [arXiv:1910.05365]

Bkg suppression impact on control sample (statistically dominated)

Background yields: from data-MC agreement in control samples with reversed τ-suppression selection

- Selection finalized
- Corrections applied and systematic uncertainties assessed from cross-check on control sample/sidebands
- Signal yield extraction and limits computation defined

Time to unboxed the data and compute the results!

Example: Z' → *invisible* (2018) *Le grand final*: unboxed results

• Signal yields extracted by applying a Poisson counting experiment technique, in each recoil mass bin, after the final selections \rightarrow upper limits on the cross-section $\sigma_{Z'}$ are computed in a Bayesian approach

Return to the present...

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

New limits on invisible Z'

Update on 2019-2020 data:

- ⁻ Much higher luminosity (\sim x 300)
- Analysis improvements
 - Better particle identification (muon ID)
 - Better background suppression algorithm (MVA)
 - Frequentist approach for UL extraction based on fitting
- New trigger lines (devised after the pilot run)
- Template fits to the recoil mass squared, in bins of recoil polar angle → no significant excess, 90%
 CL upper limits on the *coupling constant g'*

IMPROVEMENT: (g-2) _ favored region excluded for 0.8 < M $_{z^{\prime}} <$ 5

Roma Tre, PhD course 2025

L. Zani - Dark sectors searches at colliders

Inheriting from Z' \rightarrow invisible search to expand to other cases: dark higgsstrahlung

Dark higgsstrahlung

- Dark photon (A') mass can be generated via a spontaneous symmetry breaking^(*) mechanism, by adding a dark Higgs boson (h')
- Look for the dark Higgsstrahlung process, $e^+e^- \rightarrow A'^* \rightarrow h' A'$

- 4 parameters (no mixing with SM Higgs assumed): m_{h'}, m_{A'}, ε, α_D
- M_h,>M_A: h' can decay to a pair A', and A' into SM final states, "visible dark higgs"already searched by Belle, Babar
- $M_{h'} < M_{A'}$: invisible decays of h'

* Batell, Pospelov, Ritz, Phys. Rev. D 79, 115008 (2009)

Roma Tre, PhD course 2025 L. Zani - Dark se

Invisible dark higgsstrahlung

* Babusci et al. (2015), Phys.Lett. B 747 pg. 365-372, 0370-2693

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Dark higgsstrahlung results

Searching for invisible decays of dark photon: mono-photon search

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Single photon search

• Select events with **nothing** but a single high energetic *ISR* photon. Look for a bump in the reconstructed photon energy $E_{\gamma} = (s - m^2_{A'})/2\sqrt{s}$

(First and) simplest dark sector to search for, but experimentally very challenging!

• Dedicated single photon trigger, not available at Belle and only on 10% of Babar data

Single photon search

(Un)holy GRAil

Background: QED processes $e^+e^- \rightarrow \gamma \gamma \gamma (\gamma)$ (low mass region) and radiative Bhabha $e^+e^- \rightarrow e^+e^- \gamma (\gamma)$ (high mass region) + cosmics

Displaced vertices at Belle II

Search for long-lived (pseudo)scalar in b \rightarrow s transitions

Κ

- Model-independent search for dark scalar particles S from B decays in rare $b \rightarrow s$ transition
 - S could mix with SM Higgs with mixing angle $heta_{_{
 m s}}$ (naturally long-lived for $heta_{_{
 m s}}$ << 1)
 - for $\rm M_{_S} < \rm M_{_B}\,$ decay to dark matter kinematically forbidden by relic density constraint

- Look for S decays into SM final states in **8 exclusive** channels:
 - [−] $B^+ \rightarrow K^+S$ and $B^0 \rightarrow K^{*0}$ (→ $K^+\pi^-$)S, with $S \rightarrow ee/µµ/ππ/KK$
- B-meson kinematics to reject combinatorial background

Background estimate

$$M_{S \to x^+ x^-}^{\text{reduced}} = \sqrt{M_{S \to x^+ x^-}^2 - 4m_x^2}$$

- Look for a narrow peak in distribution of the invariant mass spectrum
 - extended max likelihood unbinned fits with template
 PDFs for signal (modeled on simulation, yield floating) +
 bkg (also shape fitted from the data)
 - separately for each channel and lifetime
- Peaking bkg: SM long-lived K_s mass region vetoed
 - used as control sample in data to validated displaced
 vertex efficiency and evaluate the systematic uncertainties

Searches for visible decays

Exploring pseudo-scalar portals: ALPs

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Axion-like particles

- Axion-like particles (ALPs) are pseudo-scalars coupling mainly to bosons, with non-renormalizable coupling constants $[g_{aV}] \sim 1/M$
- Explored photon coupling g_{aγγ} in *ALP-strahlung* processes
- Possible to investigate g_{aW} coupling in neutral current processes (rare B meson decays):
 B→Ka

Roma Tre, PhD course 2025

L. Zani - Dark sectors searches at colliders

ALP-strahlung: a $\rightarrow \gamma\gamma$ search

a $\rightarrow \gamma\gamma$: existing limits

Rich dark sectors: non-minimal model testing

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Inelastic dark matter

- DM models may include more particles in the dark sectors
- Inelastic dark matter (IDM) is an interesting and accessible case to look for
 - $^-$ Consider two states with a small mass splitting, $\chi 1$ and $\chi 2$ and a dark photon mediator A'
 - * $\chi 1$ is stable (relic)
 - $\chi 2$ is long-lived at small values of kinetic-mixing coupling ()
- IDMs are rather hidden to direct detection experiments (also CMB constraints are relaxed)

$$\Delta \equiv \frac{m_2 - m_1}{m_1} \ll 1$$

$$\frac{\chi_2}{\chi_1} \Delta m_1$$

Inelastic dark matter decays

 \rightarrow unconstrained by direct detection experiments, both inelastic and elastic scattering suppressed high intensity experiments are the prime avenue to probe IDM!

IDM signatures

• Belle II could constrain the kinetic mixing $arepsilon < 10^{ ext{-4}}$

Journal of High Energy Physics volume 2020, Article number: 39 (2020)

Conclusion

- Thermal dark sectors are favored by many dark matter models
 - Theoretically well motivated
- Compelling to search as broadly, as much model-independent as possible
 - Low energy, high intensity experiments are perfect testbed for thermal dark sector targets
- <u>Belle II</u> has unique or world leading reach in many searches
 - Important complementarity with present and future fixed-target experiments

References:

- Dark Sector Studies with Neutrino Beams (Snowmass Whitepaper)
- Snowmasss 2021 RF6 Dark Sector Physics Report

- U.S. Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
- The Belle II Physics Book, PTEP 2019 (2019)

Roma Tre, PhD course 2025 L. Zani - Dark sectors searches at colliders

Dark photon (and DM) signatures

L. Zani - Dark sectors searches at colliders

Experiments at B-factories

B-factories: dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent BB pairs \rightarrow **CP violation studies**.

$$e^+e^- \rightarrow \sqrt{s} = 10.58 \text{ GeV} (\Upsilon(4S)) \rightarrow B\overline{B}$$

First generation of B-factories (operation ~1999-2010)

at the KEKB collider (KEK, Japan)

at the PEP II collider (SLAC, California)

• Clean environment of lepton collider $ ightarrow$			
lower background, high resolution			
• Hermetic detector with excellent PID			
capability $ ightarrow$ efficient reconstruction of			
<i>neutrals</i> (πº, η,), <i>recoiling system</i> and			
<i>missing energy</i> final states			

Dark higgsstrahlung: analysis strategy

- A' reconstructed as muon pairs, $M_{\mu\mu} > 1.65$ GeV for trigger requirements

 \rightarrow Additional kinematic constraint: **resonant** dimuon candidate, peak in direct mass

- Scan dimuon and recoil mass searching for peaks in 9000 sliding elliptical windows
- Apply Bayesian counting technique (challenging look-elsewhere effect)

 \rightarrow Final recoil spectrum in good agreement between data and simulation

First model independent results for LLP

• No significant excess found in $189~fb^{\text{-}1} \to first~model-independent~95\%$ CL upper limits on $\mathsf{BF}(\mathsf{B}{\to}\mathsf{KS}){\times}\mathsf{BF}(\mathsf{S}{\to}x^{\text{+}}x^{\text{-}})$

 \rightarrow First limits on decays to hadrons

- Translate into model dependent limits on $m_{_S} vs \; sin \theta_{_S}, \; with \; c\tau_{_S} = f(m_{_S}, \; \theta_{_S})$

Dark Higgs-like scalar S model interpretation [1]

[1]: Phys. Rev. D 101 095006 Roma Tre, PhD course 2025

Belle II reach in IDM searches

"0.9 cm < Rxy < 60 cm, and a transverse momentum of the corresponding particles of pT > 100 MeV each"

Roma Tre, PhD course 2025

L. Zani - Dark sectors searches at colliders

Invisible signatures

Example scenario: invisible dark photon

Visible signatures

Example scenario: visible dark scalar

Nuclear reactions

• Neutrino trident production with a Z' boson

L. Zani - Dark sectors searches at colliders

Cross section in e^+e^- collision at 10.58 GeV

Physics process	Cross section [nb]	Selection Criteria	Reference
$\Upsilon(4S)$	1.110 ± 0.008	ш. Г.	[2]
$uar{u}(\gamma)$	1.61	-	KKMC
$dar{d}(\gamma)$	0.40	-	KKMC
$sar{s}(\gamma)$	0.38	×	KKMC
$car{c}(\gamma)$	1.30		KKMC
$e^+e^-(\gamma)$	$300\pm3~({\rm MC~stat.})$	$10^\circ < \theta_e^* < 170^\circ,$	BABAYAGA.NLO
		$E_e^* > 0.15{\rm GeV}$	
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \mathrm{GeV}/c$ and e in	-
		ECL	
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC \ stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$	BABAYAGA.NLO
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$	
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \text{GeV}$ in ECL	-
$\mu^+\mu^-(\gamma)$	1.148	-	KKMC
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	1.77
		$\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV})$ in ECL	
$\tau^+\tau^-(\gamma)$	0.919	-	KKMC
$ uar{ u}(\gamma)$	0.25×10^{-3}	-	KKMC
$e^+e^-e^+e^-$	$39.7\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5{\rm GeV}/c^2$	AAFH
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH

The Belle II Physics Book [arXiv:1808.10567]

- Low multiplicity event cross sections rapidly diverge compared to hadronic ones
- Selections applied at MC generator level to reduce the effective cross section (acceptance, particle momentum selections)
- W_{II} is the minimum invariant secondary fermion pair mass

Upper limit computation

• Signal yields extracted by applying a Poisson counting experiment technique, in each recoil mass bin, after the final selections \rightarrow Upper limits on the cross-section $\sigma_{z'}$ are computed in a Bayesian approach

Upper limit computation in the Bayesian approach

(BAT software framework: https://doi.org/10.1016/j.cpc.2009.06.026)

- N_{obs}, B_{exp}: Poissonian likelihood
- Prior distribution for Z' cross section: positive, flatly distributed in $0-10^5$ fb
- Systematic uncertainties: modeled with Gaussian functions with width equal to the size of the estimated effect
 - \rightarrow integrate over nuisance parameter priors (*marginalization*)
 - \rightarrow integrate the likelihood until the value of the integral reaches the wanted credibility level (0.90)