Meeting Nazionale n_TOF

Status of ^{63,65}Cu measurements and analysis

Nicholas Pieretti

INFN Bologna Università di Bologna

29 April 2025

990

Why Copper?

Nuclear Technologies:

- Generation IV fast reactors
- Nuclear data and materials testing at the TAPIRO research reactor
- S&U studies revealed inadequacies in Cu data libraries

Why Copper?

Nuclear Astrophysics:

- Contributions of various Copper nucleosynthesis scenarios to be determined
- Accurate determination of Cu MACS will constrain the s-process contribution

$n + {}^{63,65}Cu @ n_TOF EAR1: (n, \gamma)$

Neutron energy (eV)

• 2024: ${}^{63}Cu(n,\gamma)$ and ${}^{65}Cu(n,\gamma)$

• Resonance parameter extraction in the energy range of interest $E_n < 400$ keV, σ_{γ} below 3-5%

$n + {}^{63,65}Cu @ n_TOF EAR1: (n,tot)$

- 2025: ⁶³Cu(n,tot) and ⁶⁵Cu(n,tot)
- Measurements with ²³⁵U-loaded fission chamber
- Resonance parameter extraction in the energy range of interest *E_n* < 5 MeV
- Target: σ_{tot} uncertainty below 5% for $E_n > 100 keV$ with 100 bpd

Meeting Nazionale n_TOF

Measurements @ n_TOF: status

Experiment	Sample	Protons	Comments	
Capture	$^{63}\mathrm{Cu}$	2.0×10^{18}		
Capture	$^{65}\mathrm{Cu}$	2.0×10^{18}		
Capture	$^{nat}\mathrm{Cu}$	$0.3 imes 10^{18}$	EAR1 or EAR2 $$	
Capture	Empty-sample	0.2×10^{18}	background study	
Capture	Pb	0.2×10^{18}	background study	
Capture	С	0.2×10^{18}	background study	
Capture	$^{197}\mathrm{Au}$	0.1×10^{18}	normalization	
Transmission	$^{63}\mathrm{Cu}$	1.0×10^{18}	"Sample-in"	
Transmission	$^{65}\mathrm{Cu}$	1.0×10^{18}	"Sample-in"	
Transmission	Empty-sample	1.0×10^{18}	"Sample-out"	
		8.0×10^{18}		

Starting from May!

æ

Measurements @ n_TOF: capture setup

Measurements @ n_TOF: capture setup

Meeting Nazionale n_TOF

65 Cu capture campaign: target & C₆D₆

Preliminary analysis results: ⁶³Cu

C₆D₆ amplitude spectra Cu

N. Pieretti

Meeting Nazionale n_TOF

29 April 2025

296

C₆D₆ TOF spectra Cu

N. Pieretti

Meeting Nazionale n_TOF

C₆D₆ counts normalized to neutron intensity

C_6D_6 counts normalized to neutron intensity

Calibration: peak fits from monoenergetic sources

Calibration: peak fits from monoenergetic sources

Meeting Nazionale n_TOF

N. Pieretti

29 April 2025

Calibration curves of C₆D₆ detectors

Calibration Curve (24/07 data) - Detector 2

Calibration curves of C₆D₆ detectors

N. Pieretti

29 April 2025

Resolution function of C_6D_6 detectors

Detector 2 - Resolution function

N. Pieretti

Meeting Nazionale n_TOF

29 April 2025

Resolution function of C_6D_6 detectors

Detector 4 - Resolution function

N. Pieretti

Meeting Nazionale n_TOF

29 April 2025

Response shift of C_6D_6 detectors

Detector 2 - Response shift

э

Resolution function of C_6D_6 detectors

N. Pieretti

Meeting Nazionale n_TOF

29 April 2025

Resolution function of C_6D_6 detectors

MC by P. C. Camprini

Deposited energy L6D6 2

N. Pieretti

29 April 2025

Deposited energy L6D6 2

Deposited energy L6D6 4

Deposited energy L6D6 2

N. Pieretti

29 April 2025

Deposited energy L6D6 4

N. Pieretti

29 April 2025

PhD RAMEN: to do list

- Produce MC WF for Cu ongoing
 - Study C_6D_6 background
 - Produce yields
 - RSA on Cu
- Systematic study on uncertainties
 - Transmission measurements
- Tests for feasibility of elastic/inelastic angular distribution measurements

Thank You!

æ

DQC