³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the Analysis

Michele Spelta

⁶⁴Ni(n,γ): Motivations

⁶⁴Ni(n, γ) cross section is important:

 because, as a seed of the s-process, it affects the abundances of many isotopes synthesized in the process

Cescutti et al., MNRAS 478, 4101 (2018)

 to possibly explain the discrepancy observed in SiC grains between measured and predicted ⁶⁴Ni isotopic abundances Vescovi et al., ApJ Lett 897, 25 (2020)

Setup

Calibrations STED

RECAP

³⁰Si(n,y) & ⁶⁴Ni(n,y): Status of the analysis

Calibrations STED

Calibration and resolution functions have been computed fitting the results from different sources. The calibration of the STEDs are pretty linear.

Calibrations STED

Calibration and resolution functions have been computed fitting the results from different sources. The calibration of the STEDs are pretty linear.

Thresholds STED

STED rebounds have been fixed adjusting the **PSA**. Energy deposited thresholds can be set at **130 keV**.

Let's start with problems!

Gold (15 mm*): Pileup & Deadtime

The **saturated resonance** of Gold is affected by a huge pileup effect that can be easily corrected considering **unweighted counts**. **Thermal region is not affected by pileup**.

³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the analysis

Gold (15 mm*): Pileup & Deadtime

BUT the correction does not work for weighted counts!

Pileup increases the amplitude of signals, they are weighted more and compensate deadtime correction

³⁰Si(n, y) & ⁶⁴Ni(n, y): Status of the analysis

Gold (20 mm): Pileup & Deadtime

The situation gets worse increasing the size of the gold sample (e.g. to 20 mm diameter) In this case deadtime effect on unweighted count is approx. 20% (850 ppp), 10 % (350 ppp), 4 % (200 ppp)

³⁰Si(n,γ) & ⁶⁴Ni(n,γ) : Status of the analysis

Gold (15 mm*): Pileup & Deadtime

The situation is definitely worse for C6D6

(Higher deadtime and pileup effects, also with 15 mm diameter Au sample)

³⁰Si(n,γ) & ⁶⁴Ni(n,γ) : Status of the analysis

Gold (15 mm*): Normalization

Therefore, **counts have not been corrected for deadtime** and normalized (each detector separately) on the top of the saturated resonance with SAMMY.

Gold (15 mm*)

The normalization and the flight path fitted well reproduce the Gold capture cross section at **higher neutron energies**

(variation of the BIF has been considered, but the effect is smaller than 3 % in the keV)

Gold (15 mm*): Thermal region

The same value of normalization reproduces the thermal cross section within ± 2 – 3 %:

- BIF considered using PPAC data (Alice & Roberto) corrected for the different flight path (Transport Code)
 - Background: empty subtracted, additional background fitted in the resonance valley

³⁰Si(n, y) & ⁶⁴Ni(n, y) : Status of the analysis

Gold (15 mm*): Thermal region

Gold (20 mm): Thermal region

The subtraction of the **sample neutron scattering** (*Carbon*) is problematic:

Problem 1: the 5.9 keV Al resonance **appears shifted in tof** between Carbon and Ni64.

Problem 1: Carbon has to be not only scaled, but also shifted!

Shifted and scaled **Carbon** reproduces Ni64 neutron scattering background around the 5.9 keV Al resonance.

Additional neutron scattering component due to scattering on light material observed in empty (Mylar, air ?)

Problem 2: **Backround is not well reproduced** around 30 keV and in the resonance **Problem 3**: How to estimate **Neutron Sensitivity ?** (n scattered in Ni resonances and immediately captured)

WCounts/bin/protons (a.u.) Total Signa Beamon Empty How to properly scale Carbon? Sample Neutron Scattering ample In-Beam y Scattering 10⁻¹¹ wcounts/bin Scaling Thermal **Thermal?** Total Background 10⁻¹⁰ Scaling CumulativeSpectralAverage Scaling Pointwise Scaling SpectralAverage 10^{-1} 10-12 10⁻¹² 10⁻¹³ 10-14 With the hard provident and the second 10⁵ 10^{6} time - 10^7 (ns) 10^{-13} Pointwise is too high, but how else neutron sensitivity? P. Zugec et al., NIM A 826 (2016) 80–89 10^{4} tof - tflash (ns)

³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the analysis

Background subtraction: Simulations

GEANT4 simulations of the neutron scattered from the sample may be a solution.

EAR1: P. Zugec et al., NIM A 826 (2016) 80–89

WCounts/bin 10^{-11} 10^{-12} 10^{-13} "True" n Energy Range **Reconstructed n Energy Range** 10^{-14} 10⁻² 10^{2} 10^{3} 10^{5} 10^{-1} 10^{4} 10 10^{6} neutron energy (eV)

<u>Need to perform simulation of neutrons in the</u> <u>full energy range (GeV – meV)</u>

IDEA FOR FUTURE:

- Reproduce Carbon TOF spectrum with GEANT4
- If works, use G4 Simulation for Ni64 neutron scattering bkg and neutron sensitivity

(t, Edep)

n(E)

12**C**

Background subtraction : Simulations

FOR THE MOMENT:

 <u>Scattered neutrons</u> simulated only in the energy range of interest <u>(4 – 100 keV)</u> (Comparison with data is not possible)

Simulated Carbon spectrum is scaled as data and subtracted from Ni64 spectrum to **only keep the effect of scattering in Ni64 selected resonances**.

Background subtraction : Simulations

FOR THE MOMENT: PRELIMINARY BACKGROUND SUBTRACTION

- **«Prompt» (Direct) Neutron Sensitivity** is not bad in the 12 keV resonance, but it is better considered at 30 keV (even if still not enough)
- The improvement in the resonance valley is also not enough

Average neutron scattering bkg (Carbon scaled by spectral scattering σ , high energy also)

Neutron Sensitivity:

Effect of scattering in the **selected resonances from simulations** (not possible using pointwise σ scaling)

If you are impatient: Yield

If you are impatient: MACS

A **preliminary MACS** has been computed using the preliminary resonance fits

- MACS from this work is closer to activation measurements (Heil+ 2008) wrt nuclear data libraries
- Energy extrapolation is similar to KADoNiS0.3 (based on ENDF/B-VII.0, no resonance at 9.52 keV)
- Direct capture (thermal cross section) has to be fitted, yet.
- MACS around 30 keV is probably underestimated because of the problems in resonance fitting in this energy region

³⁰Si(n,y): Reminder

Results of ³⁰Si(n,y) measurement in EAR1 (still missing direct capture from thermal in EAR2):

³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the Analysis

Michele Spelta

EAR2: Calibrations

Gain shift has been comparing different Y88 and Au runs:

counts/bin counts/bin Y88_1 Y88 1 Y88_2 Y88_2 Y88 3 Y88 3 10-2 Y88 4 - Y88 4 Y88 5 Y88 5 Y88 6 10-4 Y88 6 – Y88 7 Y88 7 - Y88_8 Y88 8 10⁻⁵ 10⁻⁵ 3.8 % 10^{-6} 10⁻⁶ C6D6 N #2 STED #3 10⁻⁷ 6000 8000 12000 14000 2000 4000 10000 2000 0 4000 6000 8000 10000 12000 amplitude-charge (channel) amplitude-charge (channel)

C6D6: Gain Shift

STED: Stable

Gold (15 mm*): Thermal region

PROBLEMS IN BACKGROUND ESTIMATION FOR NEUTRON SCATTERING (CARBON)

C6D6 do not have Aluminum, **BUT**:

- Signal/Bkg ratio is worse
- No way to accurately normalize (idea can be to normalize to first Ni resonance, but need to fit it well with STED or normalize gold at thermal)

PROBLEMS IN BACKGROUND ESTIMATION FOR NEUTRON SCATTERING (CARBON)

C6D6 do not have Aluminum, **BUT**:

- Signal/Bkg ratio is worse
- No way to accurately normalize (idea can be to normalize to first Ni resonance, but need to fit it well with STED)