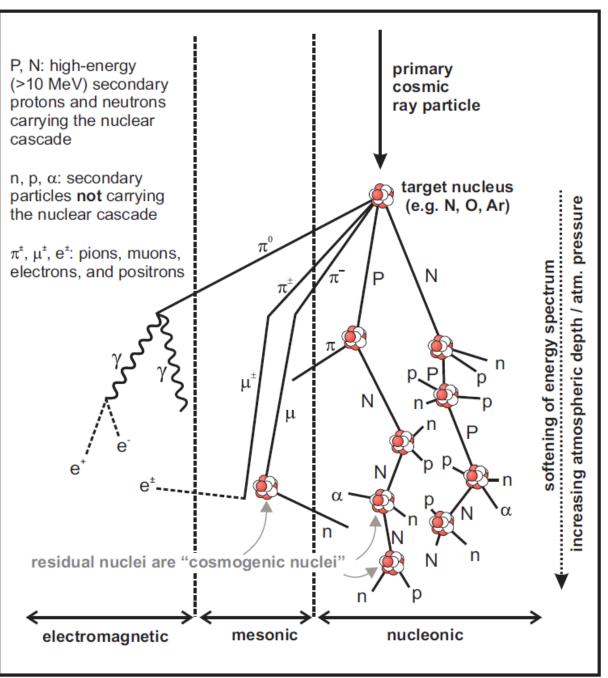

In situ cosmogenic nuclides: extraction and measurements


Tebogo Makhubela (University of Johannesburg)

MUSTAR Geodating meeting: 06 February 2025

Production of cosmogenic nuclides

THE ATMOSPHERIC NUCLEAR CASCADE

Commonly used cosmogenic nuclides in Earth Sciences

Table 1. Cosmogenic nuclides (CNs) commonly used in Earth science applications (adapted from Dunai, 2010).

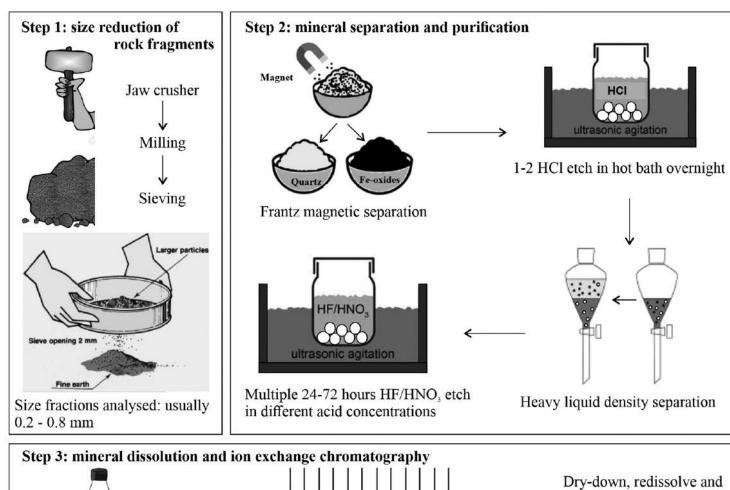
Isotope	Half-life (T _{1/2})	Main target minerals	Predominant target elements	SLHL production rate (at g ⁻¹ year ⁻¹) ^e
³ He	Stable	Olivine, pyroxene, other He- retentive minerals	All major elements	75–120
¹⁰ Be	1.387 ± 0.012 Ma	Quartz (rarely olivine, pyroxene)	O, Si (Mg)	4–5
¹⁴ C ²¹ Ne, ²² Ne	5730 ± 30 a ^b Stable	Quartz Quartz, olivine, pyroxene	O, Si Mg, Al, Si	18–20 18–21
²⁶ Al	708 ± 17 ka ^c	Quartz	Si	35
³⁶ Cl	301 ± 2 ka ^a	Carbonates, feldspar, (rarely whole rock)	K, Ca, Cl, (Fe, Ti)	70 (Ca), 200 (K)

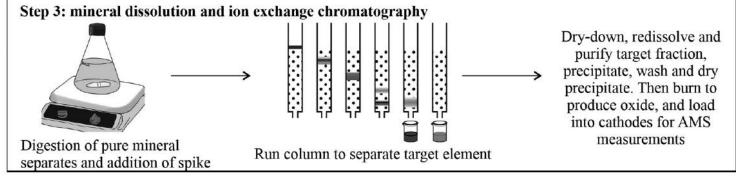
Half-lives from (a) (Chmeleff et al., 2010; Korschinek et al., 2010 (b) Lederer et al. (1978) (c) Nishiizumi (2004) (d) Holden, 1990). Abbreviations: a = annum, ka = kiloannum, Ma = Megaannum. SLHL (sea level-high latitude) production rates (e) from Von Blanckenburg and Willenbring (2014).

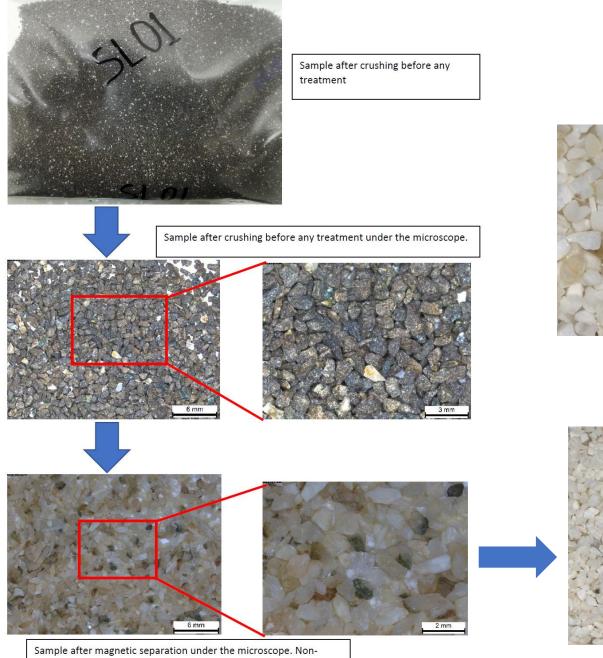
Are there other minerals than quartz (SiO₂) producing ¹⁰Be and ²⁶Al by muons and neutrons?

Yes, ...

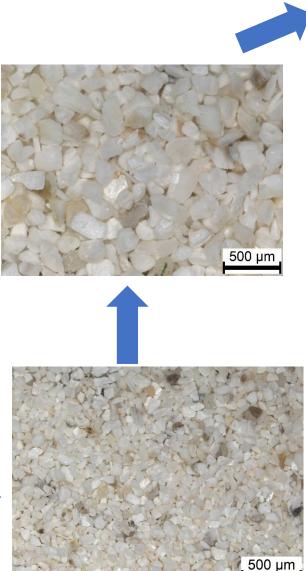
- Dolostone et al. (e.g. ankerite)
- Chert
- Sediments




... but major reactions that matter for producing ¹⁰Be and ²⁶Al:


Yes, but Isotope	Primary spallation reactions	Thermal neutron capture	Negative muon capture
¹⁰ Be	$^{16}O(n,^{3}He\alpha)^{10}Be$ or $^{16}O(n,4p3n)^{10}Be$ $^{28}Si(n,x)^{10}Be$	⁹ Be(n,γ) ¹⁰ Be	$^{16}_{^{28}\text{Si}(\mu^-,x)^{10}\text{Be}}$
²⁶ A1	28 Si(n,2np) 26 Al		28 Si(μ^- ,2n) 26 A1

Dunai, 2010


1) When we try to estimate p-values for instance for thermal neutrons we look also for cases where 10Be and 26Al could have been created from other minerals....does the above statement mean that this is irrelevant because the other minerals have been separated out? It is not completely clear to me.

magnetic fraction contains abundant quartz.

After numerous
HF+HNO3 leaching.
Even if all minerals
are removed there is
still quartz that
contains
contaminants within
itself, but those
contaminants are
often negligible.

2) Also there are discussions to expose materials to the NTOF beam to try to study production of Be and A as function of the neutron energy... What samples should be used ...pure Silicon or?

I am not sure. Maybe pure SiO_2 ?