
Access to services via SSH
with OpenID Connect.

Aksieniia Shtimmerman
CNAF INFN

12-14 MAY 2025,

Motivation

Access to Services via SSH with OpenID Connect

Main Components

 Server:
motley cue,: a service for mapping
OIDC identities to local identities.
pam-ssh-oidc: a Pluggable
Authentication Module (PAM) that
accepts OIDC Access Tokens for
authenticating users.

Client-Side
oidc-agent: Obtains OIDC access
tokens.
mccli: Manages access tokens and
communicates with motley_cue.

Motley_Cue
Introduction and Installation

This diagram show
Motley_Cue operates.

Configuration

Install motley_cue:

Configuration file /etc/motley_cue/motley_cue.conf:

Configuration file /etc/motley_cue/feudal_adapter.conf:

Configuration file /etc/nginx/conf.d/nginx.motley_cue.conf:

● The main server block listens on port 443 with SSL enabled.
● SSL certificates are specified for secure connections.
● Requests to the root (/) and /oidc paths are proxied to a local service

running on port 8080.
● Various headers are set to ensure proper forwarding of the original

request information.
● Error and access logs are specified for troubleshooting and monitoring.

Debugging and Troubleshooting Motley-cue

Identify the Problem:

motley_cue logs for any errors.
sudo journalctl -u motley_cue

sudo tail -f /var/log/auth.log

 /var/log/nginx/motley_cue_error

/var/log/nginx/motley_cue_access.log.

/etc/nginx/conf.d/nginx.motley_cue.conf

Ensure that environment variables set by eval $(oidc-agent-service use) are correctly configured and
active

https://mccli.readthedocs.io/en/lates
t/index.html

Install PAM module

Module PAM must be configured. The setup is
different, depending on the linux distribution
you use file sshd config
/etc/ssh/sshd_config one of the
following enable:

Restart sshd service:

To SSH into a server that supports OIDC authentication, you’ll
need install the client

The recommended way to install
mccli is with pip:

For a full description of the options, use the help option — also on each subcommand, as they might have additional options
available:

Configure account in oidc-agent <your-mccli-host>:
Youo need to start the oidc-agent service and set the necessary environment
variables for managing OpenID Connect (OIDC) tokens. Here's a breakdown of what it
does: $ eval $(oidc-agent-service use)

add a new OIDC account configuration:
oidc-add your-mccli-host

initializes the oidc-agent service:

For add OIDC account <your-mccli-host>:
For add OIDC account
<mccli-t1-computing>:

If your want unset token use command:

 Connecting to an OIDC-capable SSH server:

mccli info --oidc <oidc-agent
account name>

Bonus
SSH with IAM

Two features meet…

- INDIGO-IAM allows any user to
upload ssh public keys into its own
account

- public keys can be programmatically read
via IAM API

- AuthorizedKeysCommand SSHD configuration keyword
- Starting from OpenSSH 9.4/9.4p1 (2023-08-10)
- AlmaLinux 9 supports it
- https://man.openbsd.org/sshd_config#AuthorizedKeysCommand

- Let’s try to combine them:
- IAM as the only source of AuthN/Z
- UNIX account provisioning handled separately

17

https://man.openbsd.org/sshd_config#AuthorizedKeysCommand

$ man 5 sshd_config

In other words: set the command line that upon execution writes the user’s public
SSH keys on stdout

AuthorizedKeysCommand

Specifies a program to be used to look up the user's public keys. The program must be owned by root, not
writable by group or others and specified by an absolute path. Arguments to AuthorizedKeysCommand accept
the tokens described in the TOKENS section. If no arguments are specified then the username of the target user
is used.

The program should produce on standard output zero or more lines of authorized_keys output (see
AUTHORIZED_KEYS in sshd(8)). AuthorizedKeysCommand is tried after the usual AuthorizedKeysFile
files and will not be executed if a matching key is found there. By default, no AuthorizedKeysCommand is run.

18

https://man.openbsd.org/sshd_config#AuthorizedKeysCommand
https://man.openbsd.org/sshd_config#TOKENS
https://man.openbsd.org/sshd.8

System setup - sshd_config

- AuthorizedKeysFile is set to none, to avoid users set their keys in an alternate location
- we want IAM as the only source of AuthN/Z for better security

- AuthorizedKeysCommand is set to the path of the script, followed by the %u placeholder
that is replaced at execution time by the username that requests access

- AuthorizedKeysCommandUser is set to sshkey system user, to avoid running as root
- Override rule allows an admin user to access the server also via authorized keys file

- we don’t want to lock out the admins if IAM goes down

1 PubkeyAuthentication yes
2 AuthorizedKeysFile none
3 AuthorizedKeysCommand /etc/security/ssh-keys-command.sh %u
4 AuthorizedKeysCommandUser sshkey
5 Match User almalinux
6 AuthorizedKeysFile .ssh/authorized_keys

19

System setup - user and group

$ getent group sshkey

sshkey:x:1005:

$ getent passwd sshkey

sshkey:x:1004:1005::/home/sshkey:/sbin/nologin

20

“sshkey” is a unprivileged system account and group

System setup - permissions and SELinux

21

$ getenforce

Enforcing

$ ls -lhZ /etc/security/ssh-keys-command.sh

-rwxr-x---. 1 root sshkey unconfined_u:object_r:etc_t:s0 724 Apr 4 15:19 /etc/security/ssh-keys-command.sh

- SELinux is Enforcing!
- after installing the script, “restorecon -v /etc/security/ssh-keys-command.sh”
- the sshkey group can read and execute the script
- the owner of the script is root

$ cat /etc/security/ssh-keys-command.sh

 1 #!/bin/bash
 2
 3 ISSUER=https://iam-dev.cloud.cnaf.infn.it
 4 CLIENT_ID=REDACTED
 5 CLIENT_SECRET=REDACTED
 6
 7 USERNAME=$1
 8
 9 TOKEN=$(curl -s -L -X POST \
10 -d "grant_type=client_credentials " \
11 -d "client_id=$CLIENT_ID" \
12 -d "client_secret= $CLIENT_SECRET " \
13 -d "audience=$ISSUER" \
14 -d "scopes=iam:admin.read " \
15 $ISSUER/token | jq -r .access_token
16)
17
18 curl -s -L -H "Authorization: Bearer ${TOKEN}"
$ISSUER/iam/account/find/byusername?username=$USERNAME | jq -r
'select(([.Resources[0].groups[].display] | index("users") != null) and .Resources[0].active) |
.Resources[0]."urn:indigo-dc:scim:schemas:IndigoUser".sshKeys[].value '

22

https://iam-dev.cloud.cnaf.infn.it

$ cat /etc/security/ssh-keys-command.sh

 1 #!/bin/bash
 2
 3 ISSUER=https://iam-dev.cloud.cnaf.infn.it
 4 CLIENT_ID=REDACTED
 5 CLIENT_SECRET=REDACTED
 6
 7 USERNAME=$1
 8
 9 TOKEN=$(curl -s -L -X POST \
10 -d "grant_type=client_credentials " \
11 -d "client_id=$CLIENT_ID" \
12 -d "client_secret= $CLIENT_SECRET " \
13 -d "audience=$ISSUER" \
14 -d "scopes=iam:admin.read " \
15 $ISSUER/token | jq -r .access_token
16)
17
18 curl -s -L -H "Authorization: Bearer ${TOKEN}"
$ISSUER/iam/account/find/byusername?username=$USERNAME | jq -r
'select(([.Resources[0].groups[].display] | index("users") != null) and .Resources[0].active) |
.Resources[0]."urn:indigo-dc:scim:schemas:IndigoUser".sshKeys[].value '

23

- Environment variables set the issuer,
client ID and secret

- An access token is requested to IAM via
the token endpoint
- the grant type is

client_credentials
- scopes are set to “iam:admin.read”

- The list of SSH public keys of the
specific user are downloaded if both
conditions are met:
- the account is active (not

deactivated/banned)
- the user is in the “users” IAM

group

https://iam-dev.cloud.cnaf.infn.it

It works

 $ ssh cpellegr@ui

Last login: Tue May 13 23:23:20 2025 from XXX.YYY.ZZZ.WWW

[cpellegr@ui ~]$ ls .ssh/authorized_keys*

ls: cannot access '.ssh/authorized_keys*': No such file or
directory

24

Access latency

 $ time ssh cpellegr@ui true

real 0m3.091s

user 0m0.238s

sys 0m0.587s

25

Each time the user tries to SSH into the server:
- an access token is requested
- the SSH keys are downloaded from IAM

- latency issues can be addressed by caching the access token and/or the ssh
keys

- few seconds when starting interactive work could anyway be acceptable

