Access to services via SSH
with OpenID Connect.

|||||||||||||||||||
NNNNNNNN
222222222

Motivation

Using SSH access with OIDC tokens allows for federated access.
Streamlines access management for users across various organizations and
systems.

Enhances security by leveraging dynamic, time-limited tokens.

Facilitates centralized identity and access management (IAM).

Access to Services via SSH with OpenlD Connect

OIDC-Agent supports agent forwarding over SSH, allowing the remote user to obtain
tokens from the local agent. This is done by forwarding the Unix domain used to
communicate with the agent. OpenlD Connect (OIDC) offers a modern solution for
managing federated identities, enhancing security and access management.

Objectives

« Security: Use OIDC access tokens to authenticate users.
« Simplicity: Avoid significant changes to existing SSH clients and servers.
» Scalability: Support integration with local user management systems.

Main Components

* motley_cue: Service for mapping OIDC identities to local identities.

« pam-ssh-oidc: Pluggable Authentication Module (PAM) that accepts OIDC access
tokens.

* mccli: Wrapper for the SSH client to connect to an OIDC-enabled SSH server.

Server: _ _

motley cue,: a service for mapping C_"e"t'SId? |

OIDC identities to local identities. ?Iic-agent. Obtains OIDC access
okens.

pam-ssh-oidc: a Pluggable
Authentication Module (PAM) that
accepts OIDC Access Tokens for
authenticating users.

mccli: Manages access tokens and
communicates with motley cue.

Motley Cue
Introduction and Installation

Motley Cue is a tool designed to simplify the management of job
queues in high-performance computing environments.

It provides an intuitive interface for resource management and
process optimization.

Supports various queue management systems, making it versatile
and adaptable to different infrastructures.

This diagram show
Motley Cue operates.

User

Su?r[lits
y

Motley_Cue

Resource

Resource Manager

Optimizes

Process Optimization

Queues

|

Queue Management
System

Executes

|

Computing Infrastructure

Rettms
}

Motley_Cue

Displays

| User Interface |

Configuration

Install Motley cue - a service for mapping OIDC identities to local identities.

motley cue works with Python 3 (>= 3.7), and only on Linux:

» Debian (testing + stable + oldstable)
Ubuntu (22.04 + 20.04 + 18.04)
Centos (7 + 8 + Stream)

Rockylinux (8.5)

OpenSuse (15.4, 15.5)

Packages are available at hitps://repo.data.kit.edu This guide explains how to install
the server Motley cue on Almakinux9 distributions

Install motley cue:

sudo dnf update

sudo dnf upgrade

dnf install python3-pip

cd fetc/yum.repos.d

wget https://repo.data.kit.edu//data-kit-edu-almalinux3. repo

install motley-cue

almalinux@us-mcclt ~ sudo systemctl status motley-cue
@® motley-cue.service - motley cue with gunicorn service
Loaded: loaded (/usr/lib/systemd/system/motley-cue.service; enabled; preset: disabled)
Active: active (running) since Mon 2025-04-14 08:23:39 CEST; 4 weeks 1 day ago
Main PID: 682 (gunicorn)
Tasks: 3 (limit: 22904)
Memory: 131.6M
CPU: 1h 25min 31.255s

CGroup: /system.slice/motley-cue.service

Apr 14 08:23:39 us-mccli.novalocal systemd[1]: Started motley_cue with gunicorn service.

Configuration file /etc/motley cue/motley cue.conf:

Here we configure several different aspects:
Which OPs do we trust
Authorisation:

Which Virtual Organisations do we support

Which individual users do we support

The privacy statement to display

Auhorised security staff

The default self-documenting configuration file is shipped with the motley-cue installation.

i[almalinux@us-mccli ~]$ 1ls /etc/motley cue/
feudal_adapter.conf motley cue.env motley cue_old.conf

motley cue.conf motley cue copy.conf privacystatement.md
[@almalinux@us-mccli ~]$ sudo vim /etc/motley cue/motley cue.conf

Configuration file /etc/motley cue/feudal adapter.conf:

Feudal adapter is the plugin-based tool that implements user
provisioning. Aspects that are configured here include:

Minimally required levels of assurances

How to map remote users to local unix accounts

How to map VO-memberships to local unix groups
Which backend to use i ok Ao

method -- default: classic

method = classic

deploy_user_ssh_keys -- default: yes. Allows using ssh keys, when they are found in the deployment request
deploy_user_ssh_keys = no

The base URL of the bwidm API
url = https://iam-t1-computing.cloud.cnaf.infn.it/

###t org_id - The ID for bwidm. This is used for prefixing user- and group names
org_id = fdl

log_outgoing_http_requests = True

[backend.ldap]

Configuration for the ldap backend
mode = read_only

host = 1ldap_server

group_base = ou=groups,dc=example

Configuration file /etc/nginx/conf.d/nginx.motley_cue.conf:

You can uncomment the server block for use port 80 instead to 443 and use port 8443 instead of 443.

The main server block listens on port 443 with SSL enabled.
SSL certificates are specified for secure connections.
Requests to the root (/) and /oidc paths are proxied to a local service
running on port 8080.

e Various headers are set to ensure proper forwarding of the original
request information.

e Error and access logs are specified for troubleshooting and monitoring.

Debugging and Troubleshooting Motley-cue

Identify the Problem:

motley cue logs for any errors.

sudo journalctl -u motley_cue https://mccli.readthedocs.io/en/lates

t/index.html

sudo tail -f /var/log/auth.log
Ivar/log/nginx/motley_cue_error °
Ivar/log/nginx/motley_cue_access.log. I I | C C I I

letc/nginx/conf.d/nginx.motley_cue.conf

Ensure that environment variables set by eval $(oidc-agent-service use) are correctly configured and
active

Install PAM module

This library uses authentication code flow and follows rfc7636
and rfc6749. User is prompted with a verification code and then
receives authentication code which allows to call keycloak token
endpoint and authenticate the user.

dnf install pam-ssh-oidc-autoconfig

Module PAM must be configured. The setup is
different, depending on the linux distribution
you use file sshd config # one of the following, depending on your version of OpenSSH:
/etc/ssh/sshd_config one of the
following enable:

UsePam yes

ChallengeResponseAuthentication yes
KbdInteractiveAuthentication yes

Restart sshd service:

PasswordAuthentication no
systemctl restart sshd

To SSH into a server that supports OIDC authentication, you'll
need install the client

The recommended way to install
mccli is with pip:

pip install mccli

For a full description of the options, use the help option — also on each subcommand, as they might have additional options
available:

mccli --help
mccli ssh --help

mccli info --help

Configure account in oidc-agent <your-mccli-host>:

Youo need to start the oidc-agent service and set the necessary environment

variables for managing OpenlD Connect (OIDC) tokens. Here's a breakdown of what it
does: $ eval $(oidc-agent-service use)

add a new OIDC account configuration:
oidc-add your-mccli-host

at shtimmerman [r] [~/modules/user-support/mccli]
$ eval $(oidc-agent-service use)
977441

at shtimmerman [] [~/modules/user-support/mccli]
$ oidc-gen -1

The following account configurations are usable:

argocd
ashtimmerman_token
mccli
mccli-tl-computing
mccli_test
pilota

lcg

initializes the oidc-agent service:

n1Ad-s snont coarvis ra e

For add OIDC account <your-mccli-host>:

For add OIDC account
<mccli-t1-computing>:

OIDC_AGENT_ACCOUNT=you-account

ACCESS_TOKEN= you-mccli-host

If your want unset token use command:

RN

-cSS_TOKEN

Connecting to an OIDC-capable SSH server:

shtimmerman@shtimmerman:~$ mccli ssh 131.154.162.55 . . .
. - < -
Last login:Mon May 12:12:34 2025 from 172.16.10.169 mccli info --oidc <oidc-agent

[user-support@01@us-mccli ~]$ account name>

Bonus
SSH with IAM

SSH keys a

Two features meet... g s
::z‘ag:;?;?KthKNn6r30kf8VDquetXWK3LwnEm15kiLKELos=
- INDIGO-IAM allows any user to — S
upload SSh pUinc keys into itS OW” :i::i::;gti-lquV6rHyy9szWlsiK/BPprngw9Ie9ezeAOWo=
account
- public keys can be programmatically read
via IAM API

- AuthorizedKeysCommand SSHD configuration keyword
- Starting from OpenSSH 9.4/9.4p1 (2023-08-10)
- AlmaLinux 9 supports it

- https://man.openbsd.org/sshd_config#AuthorizedKeysCommand
- Let's try to combine them:

- |AM as the only source of AuthN/Z

- UNIX account provisioning handled separately

17

https://man.openbsd.org/sshd_config#AuthorizedKeysCommand

$ man 5 sshd config

AuthorizedKeysCommand

Specifies a program to be used to look up the user's public keys. The program must be owned by root, not
writable by group or others and specified by an absolute path. Arguments to AuthorizedKeysCommand accept
the tokens described in the TOKENS section. If no arguments are specified then the username of the target user
is used.

The program should produce on standard output zero or more lines of authorized_keys output (see
AUTHORIZED_KEYS in sshd(8)). AuthorizedKeysCommand is tried after the usual AuthorizedKeysFile
files and will not be executed if a matching key is found there. By default, no AuthorizedKeysCommand is run.

In other words: set the command line that upon execution writes the user’s public
SSH keys on stdout

18

https://man.openbsd.org/sshd_config#AuthorizedKeysCommand
https://man.openbsd.org/sshd_config#TOKENS
https://man.openbsd.org/sshd.8

System setup - sshd config

PubkeyAuthentication yes
AuthorizedKeysFile none
AuthorizedKeysCommand /etc/security/ssh-keys—-command.sh %u

AuthorizedKeysCommandUser sshkey

Match User almalinux
AuthorizedKeysFile .ssh/authorized keys

- AuthorizedKeysFile is set to none, to avoid users set their keys in an alternate location
- we want IAM as the only source of AuthN/Z for better security
- AuthorizedKeysCommand is set to the path of the script, followed by the %u placeholder
that is replaced at execution time by the username that requests access
- AuthorizedKeysCommandUser is set to sshkey system user, to avoid running as root

- Override rule allows an admin user to access the server also via authorized keys file

- we don’t want to lock out the admins if IAM goes down
19

System setup - user and group

“sshkey” is a unprivileged system account and group

$ getent group sshkey

sshkey:x:1005:

$ getent passwd sshkey

sshkey:x:1004:1005::/home/sshkey:/sbin/nologin

20

System setup - permissions and SELinux

- SELinux is Enforcing!

- after installing the script, “restorecon -v /etc/security/ssh-keys-command.sh”
- the sshkey group can read and execute the script

- the owner of the script is root

$ getenforce

Enforcing

$ Is -IhZ /etc/security/ssh-keys-command.sh

-rwxr-x---. 1 root sshkey unconfined_u:object_r:etc t:s0 724 Apr 4 15:19

21

S cat /etc/security/ssh-keys—-command.sh

=REDACTED
=REDACTED

=51

=S (curl -s -L -X POST \
"grant type=client credentials " \
"client id=S$CLIENT ID" \
"client secret=S$CLIENT SECRET" \
"audience=S$ISSUER" \
"scopes=iam:admin.read " \
SISSUER/token | jg -r .access token
)

curl -s -L -H "Authorization: Bearer S$S{TOKEN}"
SISSUER/iam/account/ find/byusername? =SUSERNAME | Jjgq -r
'select (([.Resources[0] .groups|[].display] | index("users") != null) and .Resources[0].active)

.Resources[0] ."urn:indigo-dc:scim:schemas:IndigoUser".sshKeys[].value

https://iam-dev.cloud.cnaf.infn.it

S cat /etc/security/ssh-keys—-command.sh

Environment variables set the issuer,

=REDACTED client ID and secret

=REDACTED

An access token is requested to IAM via
the token endpoint
= the grant type is
client credentials
scopes are set to “iam:admin.read”

=51

=S (curl -s -L -X POST \
"grant type=client credentials " \
"client id=S$CLIENT ID" \
"client secret=S$CLIENT SECRET" \
"audience=S$ISSUER" \
"scopes=iam:admin.read " \
SISSUER/token | jg -r .access token
)

The list of SSH public keys of the
specific user are downloaded if both
conditions are met:
= the account is active (not
deactivated/banned)

A . . L w 72 N
(SN uscrL Lo IS LI1ICT uscLo ALzl

curl -s -L -H "Authorization: Bearer S$S{TOKEN}" group
SISSUER/iam/account/ find/byusername? =SUSERNAME | Jjgq -r
'select (([.Resources[0] .groups|[].display] | index("users") != null) and .Resources[0].active)

.Resources[0] ."urn:indigo-dc:scim:schemas:IndigoUser".sshKeys[].value '

https://iam-dev.cloud.cnaf.infn.it

It works

$ ssh cpellegr@ui
Last login: Tue May 13 23:23:20 2025 from XXX.YYY.ZZZ.WWW
[cpellegr@ui ~]$ 1ls .ssh/authorized keys*

ls: cannot access '.ssh/authorized keys*': No such file or

directory

Access latency

Each time the user tries to SSH into the server:
- an access token is requested
- the SSH keys are downloaded from |IAM

$ time ssh cpellegr@ui true

real Om3.091s
user OmO.238s

SYysS Om0.587s

- latency issues can be addressed by caching the access token and/or the ssh
keys

- few seconds when starting interactive work could anyway be acceptable

25

