
WLCG profile for JWTs

Corso di formazione “Panoramica su OAuth2/OpenID Connect e sue applicazioni
tramite il servizio INDIGO IAM”, 12-14 Maggio 2025, LNF

Roberta Miccoli, INFN CNAF

Evolution of the WLCG AAI beyond X.509

 Current, X.509-based AAI Future, token-based AAI

Approach: leverage and build upon the WLCG experience

Move beyond X.509
IAM VOMS

AA

Online
CA

Certificate
generation

AuthN & Consent

Brokered
AuthN

OAuth/OIDC
aware service

X.509/VOMS
aware service

2

Evolution of the WLCG AAI beyond X.509

To access computing and storage
resources in the WLCG community,
users use a VOMS proxy

A VOMS proxy provides information
about who you are, for which Virtual
Organization (VO) you’re acting and
what you can do on the
infrastructure (i.e. VOMS groups
and roles)

3

Evolution of the WLCG AAI beyond X.509

In the near future we will use tokens,
which will provide similar information

Tokens are obtained from a VO token
issuer (e.g. INDIGO IAM) using
OAuth/OpenID Connect protocol
message exchanges (aka flows)

Tokens are sent to services/resources
following OAuth recommendations

4

IAM VOMS
AA

Online
CA

Certificate
generation

AuthN &
Consent

Brokered
AuthN

OAuth/OIDC
aware service

X.509/VOMS
aware service

Evolution of the WLCG AAI beyond X.509

Authorization is then performed at the
services leveraging info extracted from
the token:

● Identity attributes: e.g. groups
● OAuth scopes: capabilities linked

to access tokens at token creation
time

Services can then grant or deny access
to functionality based on this information

5

IAM VOMS
AA

Online
CA

Certificate
generation

AuthN &
Consent

Brokered
AuthN

OAuth/OIDC
aware service

X.509/VOMS
aware service

IAM VOMS
AA

Online
CA

Certificate
generation

AuthN & Consent

Brokered
AuthN

OAuth/OIDC
aware service

X.509/VOMS
aware service

 Current, X.509-based AAI Future, token-based AAI

Evolution of the WLCG AAI beyond X.509

Move beyond X.509The transition will be
gradual!

6

WLCG JWT profile
https://doi.org/10.5281/zenodo.3460258

“This document describes how WLCG users may use the
available geographically distributed resources without X.509
credentials.”

“In this model, clients are issued with bearer tokens; these
tokens are subsequently used to interact with resources. The
tokens may contain authorization groups and/or
capabilities, according to the preference of the Virtual
Organisation (VO), applications and relying parties.”

“Three major technologies are identified as providing the
basis for this system: OAuth2, OpenID Connect and JSON
Web Tokens.”

7

https://doi.org/10.5281/zenodo.3460258
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/developers/specs/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

WLCG specific token claims

● wlcg.ver: version of the WLCG token profile the Relying Parties must
understand to validate the token

○ it corresponds to the version of the WLCG JWT profile document
○ example: "wlcg.ver": "1.0"

● wlcg.groups: group information about an authenticated End-User, following a
UNIX-like path syntax

○ example: "wlcg.groups": ["/atlas", "/atlas/pilots", "/atlas/xfers"]

● aud: represents the recipient the JWT is intended for
○ defined more punctually in RFC 8707, BUT
○ the WLCG JWT profile specifies that the "https://wlcg.cern.ch/jwt/v1/any"

audience must be accepted by all WLCG Relying Parties

8

https://www.rfc-editor.org/rfc/rfc8707.html
https://doi.org/10.5281/zenodo.3460258

Authorization models in WLCG

Capability-based authorization: scope

● When a capability is asserted, it has to be honoured by the Resource Servers (RS). It is the VO (i.e. the
Authorization Server), NOT the RS, who manages authorization within its area

● The WLCG authorization model follows the recommendation of Section 3.3 of RFC 6749:

○ each desired capability should be requested in the scope parameter during the authorization request
○ if an entity is not entitled to a capability, the requested scope may be ignored by the authorization server and the corresponding access

token may not have the corresponding claims
○ if the issued access token scope is different from the one requested by the client, the authorization server MUST include the "scope"

response parameter to inform the client of the actual scope granted

● The scopes limit what are the operations that can be authorized by clients presenting an access token to
a RS

● The interpretation of such authorizations would result in a list of operations the bearer is allowed to perform

● Building on the SciTokens experience, define scopes that would match our computing use-cases

9

https://www.rfc-editor.org/rfc/rfc6749#section-3.3
https://scitokens.org/

Authorization models in WLCG

Identity-based authorization: wlcg.groups

● When groups are asserted, the bearer has the access privileges corresponding to the VO’s listed
groups. It is up to the RS to determine the mapping of the group names to the access privileges

● Require the wlcg.groups scope to implement a group selection mechanism for groups equivalent to
the one provided by VOMS, following the approach outlined in the OpenID Connect standard

○ “For OpenID Connect, scopes can be used to request that specific sets of information be made available as Claim Values”
○ in WLCG, scopes are defined and mapped to claims, which are returned in access tokens, ID tokens, and in responses to

userinfo and introspection requests

● It results in a wlcg.groups claim whose value is an ordered JSON array reflecting the VO groups of
which the token subject is a member

10

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Capability-based authorization for storage access

● storage.read: Read data. Only applies to online resources such as disk (as
opposed to nearline such as tape where the storage.stage authorization should
be used in addition)

● storage.create: Upload data. This includes renaming files if the destination file does
not already exist. This authorization DOES NOT permit overwriting or deletion of
stored data

● storage.modify: Change data. This includes renaming files and writing data. This
permission includes overwriting or replacing stored data in addition to deleting or
truncating data

● storage.stage: Cause data to be staged from a nearline resource to an online
resource. This is a superset of storage.read

11

Capability-based authorization for storage access

Storage scopes additionally provide a resource path, which further limits the
authorization
● The resource path follows the format $AUTHZ:$PATH

○ Example: storage.read:/foo provides a read authorization for the resource at /foo but not /bar

● The resource path may be / to authorize the entire resource associated with the
issuer

○ Example: a token issued by the Atlas IAM and containing the storage.modify:/ scope allows to
write data in the entire Atlas namespace

● Following the Scitokens model, permissions granted on a path apply transitively to
subpaths

○ Example: storage.read:/cms grants read access to the /cms directory and to all its content, but
does not grant read access to the /atlas directory

12

Capability-based authorization for storage access

● This approach is not equivalent with POSIX semantics, but matches well
with our experiments data access authorization models

○ For example, if a token contains the storage.read:/home scope, an implementation must
override normal POSIX access control and leave the bearer to access all user’s home
directories

● Implementing this authorization is up to Client applications (i.e. StoRM
WebDAV, dCache, etc.)

The token just provides a (signed) string!

13

Capability-based authorization for job submission

● compute.read: “Read” or query information about a job status and attributes
● compute.modify: Modify or change the attributes of an existing job
● compute.create: Create or submit a new job at the computing resource
● compute.cancel: Delete a job from the computing resource, potentially

terminating a running job

Currently, they refer to all jobs owned by the issuer (i.e. a finer-grained path
authorization is not foreseen).

For instance, a token with compute.read scope issued by
https://cms-auth.cern.ch would be able to query the status of any CMS job at the
resource

14

https://cms-auth.cern.ch

Identity-based authorization using groups

The wlcg.groups scope is used to implement an attribute selection mechanism

In the WLCG JWT profile two types of groups have been defined

● Default groups, whose membership is always asserted (similar to VOMS groups)

● Optional groups, whose membership is asserted only when explicitly requested by the
Client application (similar to VOMS roles)

Those groups appear in the access token when a user (i.e. the sub of an AT) delegates
access to a Client application based on its attributes membership

15

Identity-based authorization using groups

● A parametric wlcg.groups scope is introduced with the following form:
wlcg.groups[:<group-name>]

● and the the following rules:
○ if the scope does not have the parametric part, i.e. its value is wlcg.groups, the authorization server will

return the list of default groups for the user being authenticated as a value in the wlcg.groups claim
○ if the scope is parametric, (i.e. it has the form wlcg.groups:<group-name>), in addition to the default

groups the authorization server will also return the requested group if the user is member of such group
○ the order of the groups in the returned wlcg.groups claim complies with the order in which the groups were

requested
○ to request multiple groups, multiple wlcg.groups:<group-name> scopes are included in the authorization

request

● This seems complex, but it’s the attribute selection mechanism we use everyday with
VOMS

Implementing this authorization is (mostly) up to the WLCG AuthZ server (i.e., IAM)!

16

Identity-based authorization using groups: example

In the following examples /cms is the only default group

17

Trust & security

The profile document also provides recommendations on token lifetimes, trust
establishment and other important aspects

Token Type Recommended
Lifetime

Minimum
Lifetime

Maximum lifetime Justification

Access Token &
ID Token

20 minutes 5 minutes 6 hours Access token lifetime should be short as we do not foresee the
deployment of a revocation mechanism. The granted lifetime
has implications for the maximum allowable downtime of the
Access Token server

Refresh Token 10 days 1 day 30 days Refresh token lifetimes should be kept bounded, but can be
longer-lived as they are revocable. Meant to be long-lived
enough to be on a “human timescale.” Refresh tokens are not
necessarily signed and not tied to issuer public key lifetime

Issuer Public
Key Cache

6 hours 1 hour 1 day The public key cache lifetime defines the minimum revocation
time of the public key. The actual lifetime is the maximum
allowable downtime of the public key server.

Issuer Public key 6 months 2 days 12 months JWT has built-in mechanisms for key rotation; these do not
need to live as long as CAs. This may evolve following
operational experience, provision should be made for flexible
lifetimes

18

WLCG JWT profile v1.1

● There is a draft for the next version of the WLCG JWT profile

● In particular:

○ definition of wlcg.capability scope/claim

○ specify the hierarchical authorization based on sub-groups

○ clarify the authorization model when the capability and identity is asserted in the AT

○ improve authorization based on storage.* scopes

19

JWT profiles in INDIGO IAM

● A JWT profile* is a named set of rules that defines which information is
included in access tokens, id tokens, userinfo and introspection responses
issued by IAM in OAuth/OIDC flows

● The JWT default profile is IAM and is set using the
IAM_JWT_DEFAULT_PROFILE environment variable

○ the default profile will be used for all clients that do not explicitly and correctly request the use
of a profile using scopes

● To select the JWT profile used by a client, include one of the following scopes
in the list of scopes authorized for a client

○ iam, wlcg, aarc, keycloak
○ this will override the default JWT profile for that specific client
○ when multiple profiles are linked to a client, IAM reverts to the configured default profile

*explained in more detail in INDIGO IAM slides
20

WLCG JWT profile in INDIGO IAM

● Enabled with the wlcg scope
● Groups are encoded in the wlcg.groups claim

○ all the non-optional groups the user is member of are included
○ not included by default in access and ID tokens, but can be requested using the

wlcg.groups scope (to be added among the Scopes by IAM administrators)
● To configure an IAM group as optional group, add the

wlcg.optional-group label to the group

21

WLCG JWT profile in INDIGO IAM

$ oidc-token wlcg-test-client

{
 "sub":
"73f16d93-2441-4a50-88ff-85360d78c6b5",
 "iss": "http://localhost:8080",
 "preferred_username": "admin",
 "client_id":
"b47eb46a-f2dc-4a7e-b0c8-2f1e81dd5d4a",
 "wlcg.ver": "1.0",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746020859,
 "scope": "openid offline_access profile",
 "name": "Admin User",
 "exp": 1746024459,
 "iat": 1746020859,
 "jti":
"253bf3ad-da86-43e3-86c7-70ffd2204d25"
}

AT request without the wlcg.groups scope AT request with the wlcg.groups scope

$ oidc-token -s wlcg.groups wlcg-test-client

{
 "wlcg.ver": "1.0",
 "sub":
"73f16d93-2441-4a50-88ff-85360d78c6b5",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746021100,
 "scope": "wlcg.groups",
 "iss": "http://localhost:8080",
 "exp": 1746024700,
 "iat": 1746021100,
 "jti":
"457467c2-95cd-4caa-b22b-3d010a9add13",
 "client_id":
"b47eb46a-f2dc-4a7e-b0c8-2f1e81dd5d4a",
 "wlcg.groups": [

"/Analysis",
"/Production"

]
}

The user must first authorize the client to
access the wlcg.groups scope via the
consent page!

If no audience is requested, the audience
claim will be populated by
https://wlcg.cern.ch/jwt/v1/any

22

WLCG JWT profile in INDIGO IAM

$ oidc-token -s wlcg.groups:/Test-001 wlcg-test-client

{
 "wlcg.ver": "1.0",
 "sub": "73f16d93-2441-4a50-88ff-85360d78c6b5",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746022716,
 "scope": "wlcg.groups:/Test-001",
 "iss": "http://localhost:8080",
 "exp": 1746026316,
 "iat": 1746022716,
 "jti": "2500cda3-9ea7-46c5-a393-20e4031319f3",
 "client_id":
"b47eb46a-f2dc-4a7e-b0c8-2f1e81dd5d4a",
 "wlcg.groups": [

"/Test-001",
"/Analysis",
"/Production"

]
}

AT request with the optional group as parametric scope

23

