
Hands-on su flussi
OAuth/OIDC

Corso di formazione “Panoramica su OAuth2/OpenID Connect e sue
applicazioni tramite il servizio INDIGO IAM”, 12-14 Maggio 2025, LNF

Federica Agostini, INFN CNAF
Enrico Vianello, INFN CNAF
Roberta Miccoli, INFN CNAF

Setup

Register your account in INDIGO IAM

● Browse the following link: https://iam-dev.cloud.cnaf.infn.it
● click on the INFN button
● submit the registration request and wait for an admin to approve you
● check your mailbox: you should receive a link to set the proper password
● after admin approval you can login both with username/password, or INFN AAI

3

https://iam-dev.cloud.cnaf.infn.it

Register an OAuth Client in INDIGO IAM

● click on My clients (left tab)
● click on New client (the green button)
● set at least the the client name equal to demo_<last-name> (a message Change me

please! is present by default)
● click on the Grant types upper tab and select

○ authorization_code
○ client_credentials
○ refresh_token
○ urn:ietf:params:oauth:grant-type:device_code

● click the Save client green button (at the bottom page)
● once on your client details page, save your Client id (present in the Main upper tab)

somewhere locally
● go to Credentials tab and save your Client secret locally

4

Device code flow exercise (1/4)

Device code flow exercise

1. Obtain an access token with the device code flow using the
verification_uri_complete to approve your code

○ check the content of the access token

2. Obtain an access token with the device code flow using the verification_uri to approve
your code

○ check the content of the access token
○ does it differ from the previous one? why?

6

Exercise 1: solution

CLIENT_ID=<your-client-id>
CLIENT_SECRET=<your-client-secret>
IAM_HOST=iam-dev.cloud.cnaf.infn.it

Setup the following variables

Ask for a grant in form of device code

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d client_id=${CLIENT_ID}
https://${IAM_HOST}/devicecode | jq
{
 "user_code": "VWR3KL",
 "device_code": " 1b6d500c-7faf-4f69-abd3-7e7a14ec7a5e ",
 "verification_uri_complete": " https://iam.test.example/device?user_code=VWR3KL ",
 "verification_uri": "https://iam.test.example/device",
 "expires_in": 600
} Click here and, after login, approve

the Client (click on the Authorize
green button)

Save the device_code,
to be used in the token

request

7

Exercise 1: solution

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:device_code -d
device_code=1b6d500c-7faf-4f69-abd3-7e7a14ec7a5e https://${IAM_HOST}/token | jq
{
 "access_token": " eyJraWQiOiJyc2ExIiwi... ",
 "token_type": "Bearer",
 "refresh_token": "eyJhbGciOiJub25lIn0...",
 "expires_in": 3599,
 "scope": "openid email profile offline_access",
 "id_token": "eyJraWQiOiJyc2ExIiwiYWxn..."
}

Ask for an access token with the just obtained device_code

Tip: the device code can be used only once and its lifetime is 10 minutes, so if
you get an error try to repeat the steps more quickly

This grant_type indicates to IAM that
your right to obtain an access token is

due to the fact that you own a credential
in form of device code

Copy this token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

The default scopes allowed for your client
appears here and in the AT

8

Exercise 1: solution
Check the content of the encoded access token

echo $AT
eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ .eyJ3bGNnLnZlciI6IjEuMCIsInN1YiI6IjczZjE2ZDkzLTI0NDE
tNGE1MC04OGZmLTg1MzYwZDc4YzZiNSIsImF1ZCI6Imh0dHBzOlwvXC93bGNnLmNlcm4uY2hcL2p3dFwvdjFcL2Fue
SIsIm5iZiI6MTc0Njg5OTM5Miwic2NvcGUiOiJvcGVuaWQgb2ZmbGluZV9hY2Nlc3MiLCJpc3MiOiJodHRwczpcL1w
vaWFtLnRlc3QuZXhhbXBsZVwvIiwiZXhwIjoxNzQ2OTAyOTkyLCJpYXQiOjE3NDY4OTkzOTIsImp0aSI6ImM3ZmMyO
DI4LTM5OTgtNGE5ZS05NzUyLWExZDk5Mzg0YjEzMyIsImNsaWVudF9pZCI6ImRldmljZS1jb2RlLWNsaWVudCJ9 .Rd
dJJAhlKV3YARrJyqcoFoB-HhMiGnug2CD1UxP1c2rFLN2fI4EtSDbp-WKrYdvyfVFaECU8Z03SOk3ovgOI7urQDKWi
OoB7KM2Hp-Oi-eGJ4YiQcAU88ZPlm9ExHwjo23tURXMxNMW3oQ1F6Rfz8W95lpNVAk3ef4gkHCc0AVuphMTKyZhZk6
yYg-BpRoHqKyHSVKIBTY9AN3FWXijqC8_hvQSHyhGKzNmezQD9G2b05yN3cIzIrIhUgc2Pkqeekn-p4M0rMf6PplLk
aVIZZKUdDjjBGcUxo-rfXdwDvT6f33REFGf5r-96FHbSldxwd_LwEZ18M04MtPHFGFfGKw

Signature
Encoded payload

Encoded header

9

Exercise 1: solution

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "80e5fb8d-b7c8-451a-89ba-346ae278a66f",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746894757,
 "scope": "openid profile offline_access email",
 "iss": "https://iam.test.example/",
 "exp": 1746898357,
 "iat": 1746894757,
 "jti": "c6fbe29c-8f1b-4a15-8d08-5989166df136",
 "client_id": " device-code-client "
}

This is the
uuid you see
in your IAM

profile

This is your CLIENT_ID

Decode the token and check the content of the access token payload

Those are the default
access token scopes, also

present in the token
response

10

Exercise 2: solution

Ask for a device code

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d client_id=${CLIENT_ID}
https://${IAM_HOST}/devicecode | jq
{
 "user_code": " CC2KDW",
 "device_code": " 86cf06fb-f7f6-4bc4-83fd-30a3f045cb4b ",
 "verification_uri_complete": "https://iam.test.example/device?user_code=CC2KDW",
 "verification_uri": " https://iam.test.example/device ",
 "expires_in": 600
}

Click here and, after login, insert the user_code
CC2KDW, then click on Submit. This step was skipped
with the complete URI in Exercise 1. Now approve the
Client (click on the Authorize green button) if you have
clicked on Prompt me again in the previous exercise

Save the device_code,
to be used in the token

request

11

Exercise 2: solution

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:device_code -d
device_code=86cf06fb-f7f6-4bc4-83fd-30a3f045cb4b https://${IAM_HOST}/token | jq
{
 "access_token": " eyJraWQiOiJyc2ExIiwi... ",
 "token_type": "Bearer",
 "refresh_token": "eyJhbGciOiJub25lIn0...",
 "expires_in": 3599,
 "scope": "openid email profile offline_access",
 "id_token": "eyJraWQiOiJyc2ExIiwiYWxn..."
}

Ask for an access token with the just obtained device_code

Tip: the device code can be used only once and its lifetime is 10 minutes, so if
you get an error try to repeat the steps more quickly

Copy this token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

12

Exercise 2: solution
Check the decoded content of the access token payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "80e5fb8d-b7c8-451a-89ba-346ae278a66f",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746894757,
 "scope": "openid profile offline_access email",
 "iss": "https://iam.test.example/",
 "exp": 1746898357,
 "iat": 1746894757,
 "jti": "c6fbe29c-8f1b-4a15-8d08-5989166df136",
 "client_id": " device-code-client "
}

This is the
uuid you see
in your IAM

profile

This is your CLIENT_ID

The access token claims which differ with respect to the previous ones are the expiration of
the AT (exp), the time it was issued at (iat) and the token identifier (jti)

Default access token
scopes

13

Refresh token flow exercise (2/4)

Refresh token flow exercise

1. Obtain a refresh token (RT) using the device code flow

○ request the openid and offline_access scopes
○ check the content of the refresh token

2. Obtain an access token (AT) using the refresh token flow and the RT issued in the previous
bullet point

○ check the content of the AT

3. Request another AT with the same RT and check the difference with the previous one

○ request for the the openid scope

4. Request another AT with the same RT and check the difference with the previous one

○ request for the the email scope
○ what do you think it will happen?

15

Exercise 1: solution

CLIENT_ID=<your-client-id>
CLIENT_SECRET=<your-client-secret>
IAM_HOST=iam-dev.cloud.cnaf.infn.it

Setup the following variables

Ask for a device code

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d scope="openid offline_access" -d
client_id=${CLIENT_ID} https://${IAM_HOST}/devicecode | jq
{
 "user_code": "WEHIR-",
 "device_code": " 1b6d500c-7faf-4f69-abd3-7e7a14ec7a5e ",
 "verification_uri_complete": " https://iam.test.example/device?user_code=WEHIR- ",
 "verification_uri": "https://iam.test.example/device",
 "expires_in": 600
}

The offline_access scope
indicates you want to obtain a

refresh token

16

Save the
device_code, to be

used in the token
request

Click here and approve the user code

Exercise 1: solution

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:device_code -d
device_code=02739aa8-afba-490c-9712-39da986ce779 https://${IAM_HOST}/token | jq
{
 "access_token": "eyJraWQiOiJyc2ExIiwi...",
 "token_type": "Bearer",
 "refresh_token": " eyJhbGciOiJub25lIn0... ",
 "expires_in": 3599,
 "scope": "openid offline_access",
 "id_token": "eyJraWQiOiJyc2ExIiwiYWxn..."
}

Obtained an AT and RT refresh token with the device_code

Copy the refresh token in a variable, e.g.
RT=eyJraWQiOiJyc2ExIiwi...

You have just obtained the originally requested scopes

They will also appear in this access token
17

Exercise 1: solution
Check the content of the decoded refresh token

echo $RT
eyJhbGciOiJub25lIn0. eyJleHAiOjE3NDcxNTg1OTIsImp0aSI6IjU5M2UwMDNmLWY5ZTYtNDNiZC1hYjI3LWFiYj
QxNDlmMmRhNyJ9 .

Encoded payloadEncoded header

In IAM, no token signature is present, because for now the refresh token is saved in the
database and when it is used, we can just check if it’s present there rather than verify the
signature

On the other hand, this RT can be used only by IAM to issue an access token (i.e. other
authorization servers will luckily return a 401|3 error) 18

Exercise 1: solution

echo $RT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "exp": 1747158592,
 "jti": "593e003f-f9e6-43bd-ab27-abb4149f2da7"
}

Decode the token and check the content of the refresh token payload

It only presents an identifier, plus an expiration (default 30 days in IAM, but
may be changed by admins)

19

Exercise 2: solution
This exercise requires you have obtained a refresh token in Exercise 1, which is saved in
the RT variable

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=refresh_token -d
refresh_token=${RT} https://${IAM_HOST}/token | jq
{
 "access_token": " eyJraWQiOiJyc2ExIiwi... ",
 "token_type": "Bearer",
 "refresh_token": "eyJhbGciOiJub25lIn0...",
 "expires_in": 3599,
 "scope": "openid offline_access ",
 "id_token": "eyJraWQiOiJyc2ExIiwiYWxn..."
}

Ask for an access token with the just obtained refresh_token

Copy the access token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

The token response contains the same scopes as the ones originally requested (in Exercise 1,
with the device code flow), identified by the scope key in this JSON 20

This grant_type indicates to IAM that
your right to obtain an access token is

due to the fact that you own a credential
in form of refresh token

Exercise 2: solution
Insect the access token (decoded) payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "73f16d93-2441-4a50-88ff-85360d78c6b5",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746901582,
 "scope": "openid offline_access",
 "iss": "https://iam.test.example/",
 "exp": 1746905182,
 "iat": 1746901582,
 "jti": "bcebf573-bf6b-4ac6-a9e9-646d868b3731",
 "client_id": "device-code-client"
}

You are still
recognized as the
one requesting the

token (through
your UUID) even if

2 flows were
performed this

time

Also the token
contains the

originally requested
scopes

21

Exercise 3: solution
This exercise requires you have obtained a refresh token in Exercise 1, which is saved in
the RT variable

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=refresh_token -d
refresh_token=${RT} -d scope="openid" https://${IAM_HOST}/token | jq
{
 "access_token": " eyJraWQiOiJyc2ExIiwi... ",
 "token_type": "Bearer",
 "refresh_token": "eyJhbGciOiJub25lIn0...",
 "expires_in": 3599,
 "scope": "openid",
 "id_token": "eyJraWQiOiJyc2ExIiwiYWxn..."
}

Ask for an access token with the openid scope using the refresh_token flow

Copy the access token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

openid is present in the token response and
allowed since it’s a subset of the originally granted

scopes 22

Exercise 3: solution
Insect the access token (decoded) payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "73f16d93-2441-4a50-88ff-85360d78c6b5",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746902762,
 "scope": "openid",
 "iss": "https://iam.test.example/",
 "exp": 1746906362,
 "iat": 1746902762,
 "jti": "08735800-e4f8-4c6d-ad44-f36ed51dd3a5",
 "client_id": "device-code-client"
}

The access token claim which differ with respect to the previous ones is the scope, together
with the AT expiration (exp), time when it was issued (iat) and the token identifier (jti) 23

Exercise 4: solution
This exercise requires you have obtained a refresh token in Exercise 1, which is saved in
the RT variable

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=refresh_token -d
refresh_token=${RT} -d scope="email" https://${IAM_HOST}/token | jq
{
 "error": "invalid_scope",
 "error_description": "Up-scoping is not allowed."
}

Ask for an access token with the email scope using the refresh_token flow

The email scope has never been approved by the user !

24

Client credentials flow exercise (3/4)

Client credentials flow exercise

1. Obtain an access token with the client credentials flow

○ check the content of the AT

2. Obtain an access token with the openid and offline_access scopes

○ do you expect to receive also a refresh token?

3. Obtain an access token with the email scopes

○ why you don’t have the same error as with the refresh token flow?

4. Obtain an access token with the https://storm.test.example audience

○ check the content of the AT

26

Exercise 1: solution

CLIENT_ID=<your-client-id>
CLIENT_SECRET=<your-client-secret>
IAM_HOST=iam-dev.cloud.cnaf.infn.it

Setup the following variables

Ask for a grant in form of client credential

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=client_credentials
https://${IAM_HOST}/token | jq
{
 "access_token": "eyJraWQiOiJyc2ExIiwiYWx...",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "openid profile email offline_access"
}

Copy this token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

The default scopes allowed for your client
appears here and in the AT

27

Exercise 1: solution
Insect the access token (decoded) payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "client-cred",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1746904998,
 "scope": "openid profile email offline_access",
 "iss": "https://iam.test.example/",
 "exp": 1746908598,
 "iat": 1746904998,
 "jti": "1da04872-b730-491a-b4fe-48c15142e597",
 "client_id": " client-cred"
}

The client credential flow does not
required user’s intervention, it acts as
service account which asks for token by
itself

● then, the token sub is equal to the
client_id

● the token will never contain user’s
information (email, username, IAM
group membership, etc)

Also the token
contains the

originally requested
scopes

28

Exercise 2: solution
Ask for a token with the offline_access scope

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=client_credentials -d
scope="offline_access" https://${IAM_HOST}/token | jq
{
 "access_token": "eyJraWQiOiJyc2ExIiwiYWxnIjoi...",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "offline_access "
}

The offline_access scope is returned in the token response, but NO refresh token is
issued

In fact, a new access token can be requested any time from a client credentials client
(without needing a long-lived RT)

29

Exercise 3: solution
Ask for a token with the email scope

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=client_credentials -d
scope="email" https://${IAM_HOST}/token | jq
{
 "access_token": "eyJraWQiOiJyc2ExIiwiYWxnIjoiUlM...",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "email"
}

The email scope is returned in the token response since it is not bounded to a client
consent phase (i.e. the client is able to ask any scope it is allowed to receive)

30

Exercise 4: solution
Ask for a token with the https://storm.test.example audience

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=client_credentials -d
audience="https://storm.test.example" https://${IAM_HOST}/token | jq
{
 "access_token": "eyJraWQiOiJyc2ExIiwiYWxnIjoiUl...",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "openid profile offline_access email"
}

Copy this token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

31

Exercise 4: solution
Insect the access token (decoded) payload

$ echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "client-cred",
 "aud": "https://storm.test.example ",
 "nbf": 1746906312,
 "scope": "openid profile offline_access email",
 "iss": "https://iam.test.example/",
 "exp": 1746909912,
 "iat": 1746906312,
 "jti": "f26f3350-d971-4daf-b513-494a7a9e9d52",
 "client_id": "client-cred"
}

The aud claim present in the AT must be the same as the one the token is intended for

Here, we could be authorized by a StoRM WebDAV service for instance 32

Token exchange flow exercise (4/4)

Prerequisite

Register a new OAuth Client in IAM

● set at least the the client name equal to demo_exchange_<last-name>
● click the Save client green button (at the bottom page)
● once on your client details page, save your Client id (present in the Main upper tab)

somewhere locally
● go to Credentials tab and save your Client secret locally
● communicate the Client id to an IAM Admin (basically, teachers) and wait for them to add the

urn:ietf:params:oauth:grant-type:token-exchange grant type to your client

The next token exchange flow exercises require that you request the

subject token → with the demo_<last-name> client
access token → with the demo_exchange_<last-name> client

34

Token exchange flow exercise

1. Obtain an access token with the openid and profile scopes

○ request the subject token with client credentials flow and email and offline_access scopes
○ check the content of the access token

2. Obtain an access token with the openid and profile scopes, but

○ request the subject token with device code flow and email and offline_access scopes
○ check the content of the access token

3. Obtain an access token with the https://storm.test.example audience and email scope

○ request the subject token with https://fts.test.example audience
○ find a real use-case for this exercise
○ check the content of the access token

4. Try to obtain an access token without specifying the requested scopes

35

Exercise 1: solution

SUB_CLIENT_ID=<demo-client-id>
SUB_CLIENT_SECRET=<demo-client-secret>
CLIENT_ID=<demo-exchange-client-id>
CLIENT_SECRET=<demo-exchange-client-secret>
IAM_HOST=iam-dev.cloud.cnaf.infn.it

Setup the following variables

Get a SUBJECT_TOKEN with the email and offline_access scopes

SUBJECT_TOKEN=$(curl -s -L -u ${SUB_CLIENT_ID}:${SUB_CLIENT_SECRET} -d
grant_type=client_credentials -d scope="email offline_access" https://${IAM_HOST}/token |
jq -r .access_token | tr -d '"')

Here the client credential flow is used

36

Exercise 1: solution
Ask for a token with the openid and profile scopes (which were not included
in the SUBJECT_TOKEN)

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:token-exchange -d scope="openid profile" -d
subject_token=${SUBJECT_TOKEN} https://${IAM_HOST}/token | jq
{
 "access_token": " eyJraWQiOiJyc2ExIiwiYWxnIjoi... ",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "openid profile",
 "issued_token_type": "urn:ietf:params:oauth:token-type:jwt"
} Copy this token in a variable, e.g.

AT=eyJraWQiOiJyc2ExIiwi...

Despite the refresh token flow, the requested scopes are returned as token response even
if not originally granted – this is allowed by the token exchange and it’s the reason why an
IAM admin has to modify your client in order to enable this flow 37

This grant_type indicates to IAM that
your right to obtain an access token is

due to the fact that you own a credential
in form of AT (the subject token)

Exercise 1: solution
Insect the access token (decoded) payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "client-cred",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "act": {

"sub": "token-exchange-actor"
 },
 "nbf": 1746910139,
 "scope": "openid profile",
 "iss": "https://iam.test.example/",
 "exp": 1746913739,
 "iat": 1746910139,
 "jti": "fe0476ce-6980-45fa-9faf-d21d390b2563",
 "client_id": "token-exchange-actor"
}

Since the subject token
does not carry any

user information, here
also there is no

reference to the user

38

Exercise 2: solution
Get a device code with the email and offline_access scopes

curl -s -L -u ${SUB_CLIENT_ID}:${SUB_CLIENT_SECRET} -d scope="email offline_access" -d
client_id=${SUB_CLIENT_ID} https://${IAM_HOST}/devicecode | jq
{
 "user_code": "WVZQPW",
 "device_code": " 4f464aa6-aba2-4584-83cd-84d3e81c8a1d ",
 "verification_uri_complete": "https://iam.test.example/device?user_code=WVZQPW",
 "verification_uri": "https://iam.test.example/device",
 "expires_in": 600
}

Approve the user’s code and get an access token (SUBJECT_TOKEN)

SUBJECT_TOKEN=$(curl -s -L -u ${SUB_CLIENT_ID}:${SUB_CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:device_code -d
device_code=4f464aa6-aba2-4584-83cd-84d3e81c8a1d https://${IAM_HOST}/token | jq -r
.access_token | tr -d '"') 39

Exercise 2: solution

Ask for a token with the openid and profile scopes

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:token-exchange -d scope="openid profile" -d
subject_token=${SUBJECT_TOKEN} https://${IAM_HOST}/token | jq
{
 "access_token": " eyJraWQiOiJyc2ExIiwiYWxnIjoiU... ",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "openid profile",
 "id_token": "eyJraWQiOiJyc2ExIiwiYWxnIjoi...",
 "issued_token_type": "urn:ietf:params:oauth:token-type:jwt"
}

Copy this token in a variable, e.g.
AT=eyJraWQiOiJyc2ExIiwi...

Now we get also an ID token, since a user (myself) has been previously authenticated
40

Exercise 2: solution
Inspect the access token (decoded) payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "73f16d93-2441-4a50-88ff-85360d78c6b5 ",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "act": {

"sub": "token-exchange-actor "
 },
 "nbf": 1746912119,
 "scope": "openid profile",
 "iss": "https://iam.test.example/",
 "exp": 1746915719,
 "iat": 1746912119,
 "jti": "94176e69-ed75-428a-b068-6d1ba951b38f",
 "client_id": " token-exchange-actor "
}

This is the client
requesting the access

token

No ID of the Client requesting the
subject token is present in the AT

as this is an example of
impersonation !

This is my UUID,
propagated from the
SUBJECT_TOKEN

41

Exercise 3: solution

Get a SUBJECT_TOKEN with the https://fts.test.example audience and
the client credential flow to simulate a job submitted to FTS

SUBJECT_TOKEN=$(curl -s -L -u ${SUB_CLIENT_ID}:${SUB_CLIENT_SECRET} -d
grant_type=client_credentials -d audience= https://fts.test.example
https://${IAM_HOST}/token | jq -r .access_token | tr -d '"')

Ask for a token with a https://storm.test.example audience and email scope (to
simulate FTS doing a refresh flow such to have the proper audience)

AT=$(curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:token-exchange -d scope="email" -d
subject_token=${SUBJECT_TOKEN} -d audience= https://storm.test.example
https://${IAM_HOST}/tok
en | jq -r .access_token | tr -d '"')

This exercise is useful to simulate a job transmitted by a client → FTS → storage (storm)

42

Exercise 3: solution
Insect the access token (decoded) payload

echo $AT | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "client-cred",
 "aud": "https://storm.test.example ",
 "act": {

"sub": "token-exchange-actor"
 },
 "nbf": 1746913264,
 "scope": "email",
 "iss": "https://iam.test.example/",
 "exp": 1746916864,
 "iat": 1746913264,
 "jti": "e61e86d5-2798-4a24-81fe-215e0ab2ea99",
 "client_id": "token-exchange-actor"
}

The new token is
audience-restricted for

StoRM

43

Exercise 4: solution
Get a SUBJECT_TOKEN with the default scopes and the client credential flow

SUBJECT_TOKEN=$(curl -s -L -u ${SUB_CLIENT_ID}:${SUB_CLIENT_SECRET} -d
grant_type=client_credentials https://${IAM_HOST}/token | jq -r .access_token | tr -d
'"')

Ask for an access token with the default scopes

curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:token-exchange -d
subject_token=${SUBJECT_TOKEN} https://${IAM_HOST}/token | jq
{
 "error": "invalid_request",
 "error_description": "The scope parameter is required for a token exchange request!"
}

The token exchange requires that the scopes are explicitly requested
44

