
Introduzione a OAuth 2.0 e
OpenID Connect

Enrico Vianello, Federica Agostini, Roberta Miccoli
“Panoramica su OAuth2/OpenID Connect e sue applicazioni

tramite il servizio INDIGO IAM”
12-14 Maggio 2025, Frascati (Roma)

Part 1: The protocols

● Introduction
● OAuth 2.0 + OpenID Connect
● Authorization Code Flow
● The well-known endpoints
● JSON Web Tokens (JWT)
● PKCE
● Token based Authorization
● Long-Term access with Refresh

Tokens
● Client Credentials Flow
● Device Code Flow
● Token Exchange Flow
● Dynamic Client Registration
● OAuth 2.1

2

a step by step overview of the
protocol concepts

Introduction

3

Once upon a login …

4

You had an email,
maybe a Facebook.

Life was good.

Then …

5

you needed an account for
 ordering pizza,

buying socks,
 posting vacation selfies,

 renting cars,
playing yet another game, …

… and suddenly,
 you had 37 usernames
and at least 4 variations of the same password
 one of which might be “Password123!”

the hero we needed

6

The problem we’re solving

A user has access to a resource
and wants to allow a third party to have the same access

 without sharing their credentials/passwords

In the “old days” this could be solved by the third party saving the username and
password of the user, which would allow the third party to impersonate the user
when accessing the resource.

But that is less than optimal because of two points:

● if the user changes the password, all third parties lose access
● there’s no guarantee that an organization/service will keep your credentials

safe, or guarantee their service won’t access more of your personal
information than necessary

7

OAuth 2.0 + OpenID Connect

8

Open Authorization Framework

9

RFC 6749 - https://www.rfc-editor.org/rfc/rfc6749

it’s a long time…

https://www.rfc-editor.org/rfc/rfc6749

10

many updates have followed

Example

● You’ve probably run into a dialog saying something like this:

“ Hey, this app is asking for access to your Facebook account, but won’t
publish posts on your behalf ”

This is a very common pattern is OAuth

11

delegation of privileges

no shared passwords

OpenID Connect

OpenID Connect extends OAuth to provide a standard identity layer

● i.e. information about who the logged user is and how it was
authenticated

e.g. you could see OAuth 2.0 as the key of your car while OpenID Connect is
your driving license

OIDC provides ability
to establish login sessions (Single-Sign On)

OpenID Connect specification

12

https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 / OpenID Connect in action

13

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

a CLIENT can be a lot of things,
from a simple piece of software to a
complex service

SERVICE

the TOKEN SERVICE that
knowns users and clients
and issues valid
credentials/tokens

API

API

USER

API
a RESOURCE the CLIENT

wants to access
→ can be a generic API

The USER

OAuth 2.0 / OpenID Connect in action

14

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

Authenticate the user for me?

Can I access the API please?

USER

API

API

API

a CLIENT can ask to the Security
Token Service things like …

OAuth 2.0 / OpenID Connect in action

15

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

USER

Authenticate the user for me?

Can I access the API please?

OAuth 2.0

OpenID Connect

API

API

API

OAuth 2.0 / OpenID Connect in action

16

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

USER

Authenticate the user for me?

Can I access the API please?

API

OpenID Connect

OAuth 2.0

API

API

Can you handle this for me please?

OAuth 2.0

OAuth 2.0 / OpenID Connect in action

17

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

USER

Authenticate the user for me?

Can I access the API please?

API

OpenID Connect

OAuth 2.0

API

API

Can you handle this for me please?

OAuth 2.0

Help me out here, is this
client allowed to do that?

OAuth 2.0

Terminology

18

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

USER

API

API

API

Client

Authorization Server OpenID Provider

Resource Server

Resource Owner

End-User

Relying Party

OAuth2 / OpenID Connect roles/terminology (1)

19

Client / Relying-Party: The application (or service, script,
etc.) that wants to access data or perform actions

on behalf of the Resource Owner.

USER

MOBILE
APP

SCRIPT
SERVICE

Resource Owner / End-User: A user that owns resources hosted at
a service → You, the owner of your identity, your data, and any
actions that can be performed with your accounts.

OAuth2 / OpenID Connect roles/terminology (2)

20

API

API

API

Authorization Server / OpenID Provider: The application that
knows the Resource Owner and the Client, where the Resource
Owner already has an account and authenticates.
It issues tokens to Clients that can be used to access Resource
Owner resources → Resource Server.

SECURITY
TOKEN SERVICE

Resource Server: The Application Programming
Interface (API) or service the Client wants to use
on behalf of the Resource Owner.

Overview of use cases for OAuth and OIDC

● An application wants to authenticate users using an external identity provider
○ e.g. delegating login to a different identity provider, social login or enterprise SSO
○ The client that wants to authenticate the user needs an identity token
○ This scenario only uses OpenID Connect

● An application wants to use an API on behalf of the user
○ e.g. accessing an API to retrieve all the contacts of a user
○ The client needs an access token to make requests to the API
○ This scenario only uses OAuth

● An application wants to authenticate users and access APIs on their behalf
○ e.g. a mobile app that authenticates the user and then retrieves all his contacts from

API on his behalf
○ The client needs both an identity token and an access token
○ This scenario combines OpenID Connect and OAuth

21

Overview of use cases for OAuth and OIDC

22

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

USER

Authenticate the user for me?

Can I access the API please?

API

OpenID Connect

OAuth 2.0

API

API

Can you handle this for me please?

OAuth 2.0

Help me out here, is this
client allowed to do that?

OAuth 2.0

How the parties communicate?

23

MOBILE
APP

SCRIPT

SECURITY
TOKEN SERVICE

SERVICE

USER

API

API

API

Client
Authorization Server

Resource Server

Resource Owner

The four actors need a protocol to
securely communicate with each
other, to allow access to be
delegated.

Since different applications have
different requirements, there are

four different flows or protocols for
how the actors communicate.

The protocols are called “flows” in
OAuth 2.

OAuth and OIDC flows

Authorization Grant Types

=

Authorization Flows

=

the set of steps a client uses to obtain one or more tokens from the
authorization server, for the purpose of accessing a resource

24

OAuth and OIDC flows

25

Grant Type / Flow name Status

Implicit Flow Deprecated since OAuth 2.1

Resource Owner Password Credentials Flow Discouraged since OAuth 2.1

Authorization Code Flow Commonly used

Client Credentials Flow Commonly used

Refresh Token Flow Commonly used

Device Code Flow Commonly used

the Authorization Code flow

26

27

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow Initialize the flow with

the AuthZ Server by
redirecting the browser

2

Request to the AuthZ
server to start the flow 3

1. User opens the Web Application and
tries to access its resources on its
browser and it gets a redirection to
the AuthZ server

1

28

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow Initialize the flow with

the AuthZ Server by
redirecting the browser

2

Request to the AuthZ
server to start the flow 3

4. User is prompted to insert its
credentials and to authorize the
usage of its personal data

No active sessions,
who are you? please

authenticate4

1

29

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow Initialize the flow with

the AuthZ Server by
redirecting the browser

2

Request to the AuthZ
server to start the flow 3

5. User insert its credentials and
submit them to the AuthZ Server

No active sessions,
who are you? please

authenticate4

I am Enrico with
password Gengar17! 5

1

30

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow Initialize the flow with

the AuthZ Server by
redirecting the browser

Request to the AuthZ
server to start the flow 3

6. The AuthZ Server authenticates the user and returns a redirect
to the application callback he knows (client is registered) and send
an authorization code within the redirected URL → a temporary
value that only means something to the AuthZ Server

No active sessions,
who are you? please

authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6

1
2

Initialize the flow with
the AuthZ Server by

redirecting the browser

31

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3

8. the Client exchange the received authorization code to obtain
the desired access token (and/or id token)

No active sessions,
who are you? please

authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8

Initialize the flow with
the AuthZ Server by

redirecting the browser

32

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3

9. the AuthZ Server returns the access token and also an ID
Token if it’s an OpenID Provider

No active sessions,
who are you? please

authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

Initialize the flow with
the AuthZ Server by

redirecting the browser

33

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10

10. the Client can finally query the API endpoint by using the
received access token and grab the original requested data

Initialize the flow with
the AuthZ Server by

redirecting the browser

34

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

OAuth2 token validation

35

The Resource Server validates the access
token:

● through offline validation
○ no credentials needed → no need to register

the Resource Server on the Authorization
Server

○ token is parsed and the signature is verified
with the public key exposed by the AuthZ
Server

● sending the token to the introspection endpoint
○ means the Resource Server is registered on the AuthZ Server and provide

its credentials in order to do this

○ the answer is valid: true/false

SECURITY
TOKEN SERVICE

API

API

API

Is this client allowed to do that?

Resource Server

Authorization Server

The call to the introspection
endpoint

Initialize the flow with
the AuthZ Server by

redirecting the browser

36

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

API request

2
Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Issues and returns the
access token

API request with the
access token

10
Validates the token +

API response 1
1

Click Login
1

Issues and returns the
id token9

Note: the difference
between OAuth and
OIDC flows is just
“semantic”

Initialize the flow with
the AuthZ Server by

redirecting the browser

37

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

2

https://iam.cloud.infn.it/authorize
?response_type=code → indicates the authorization code flow
&scope=openid profile email → we want an ID token with email/profile info
&client_id=901C887F-EB2E-4957 → the requestor (and registered) client ID
&redirect_uri=https://webapp.com/callback → the endpoint used on step 7
&code_challenge=F4554617…A353DC
&code_challenge_method=S256

 The authorization request (a redirect to the AuthZ Server)2 3

Initialize the flow with
the AuthZ Server by

redirecting the browser

38

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

https://webapp.com/callback
?code=ySVyktqNkeEKJyyIj0K… → the temporary authorization code

 The redirect back to the client application6 7

Initialize the flow with
the AuthZ Server by

redirecting the browser

39

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

POST https://iam.cloud.infn.it/oauth/token

 grant_type=authorization_code → indicates the code exchange request
 &client_id=901C887F-EB2E-4957 → the confidential client exchanging the code

&client_secret=60DRv0g…0V0SWI → the client need to authenticate
&redirect_uri=https://webapp.com/callback → the redirect URI used before
&code=ySVyktqNkeEKJyyIj0K… → the authorization code received
&code_verifier=D0Hpp1yiK0iElVij…K8HBZB

 The request to exchange the authorization code8

Initialize the flow with
the AuthZ Server by

redirecting the browser

40

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

{
 “id_token”:
“eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIzZjU1NGQyZS1iYWZmLTQxYmUtYmJmZi02MzhhNG
E1OTk0NTAiL…YzQtNWU5NjM0NzY0M2EzIn0.mH4GSob1mgxeip37SDiUYXNGeUW9YGfMuWiSA68dGRo”,
 “access_token”:
“eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIzZjU1NGQyZS1…Dc1Yjg2NWIifQ.VNptQ-X-0TS8
_TN3sOVMcrhEYuhRk0IjzMNl0_QntNo”
}

 The response from the OpenID Provider9

OAuth2 / OpenID Connect roles/terminology (3)

41

Scope: These are the granular permissions the Client
wants, such as access to data or to perform actions.

https://webapp.com/callback Redirect URI: The URL the Authorization Server
 will redirect the Resource Owner back to after granting permission to the

Client. This is sometimes referred to as the “Callback URL.”

OAuth2 / OpenID Connect roles/terminology (4)

42

Client ID: Client identifier within the Authorization Server.

Client Secret: A secret password that only the Client and Authorization Server
know. This allows them to securely share information privately behind the scenes.

Consent: The Authorization Server takes the
Scopes the Client is requesting, and verifies with
the Resource Owner whether or not they want to
give the Client permission.

OAuth2 / OpenID Connect roles/terminology (5)

43

Refresh Token (SPOILER):

● it’s a string (→ no format required)
● clients use it to get a new Access Token without the user's interaction
● the new access token MUST have a subset of the original granted scopes
● never sent to Resource Servers

ID Token:

● defined only within OIDC and it must be a JWT
● the OAuth Client should be the audience of the token
● it contains information about the user such as name or email address

Access Token:

● it’s a string (→ no format required)
● clients use it to make requests to the Resource Server
● it may be a bearer token → those who hold the token can use it

OAuth Bearer token usage

● RFC-6750

● It defines how to use tokens in HTTP requests to access protected resources on Resource Servers

● Any party in possession of a bearer token can use it to get access to the associated resources
(without demonstrating possession of a cryptographic key)

● OAuth bearer token must be used in combination with TLS over HTTP

● Typically, tokens are sent in the Authorization HTTP header, as in the following example HTTP
request

GET / HTTP/1.1
Host: apache.test.example
Authorization: Bearer eyJraWQiOiJy…rYI
User-Agent: curl/7.65.3
Accept: */*

The token!

44

https://www.rfc-editor.org/rfc/rfc6750

The well-known endpoints

45

OAuth/OIDC provider metadata

● OAuth 2.0 / OpenID Connect specifications provide a standard way to expose
their configuration

● Information is published at a well-known endpoint
○ .well-known/openid-configuration (if OIDC Provider)
○ .well-known/oauth-authorization-server (if AuthZ Server)

● Clients should use this information to know about
○ location of key used to sign/encrypt tokens → used for token validation
○ supported grant types/authorization flows
○ endpoint locations (authorize, token, dynamic client creation, etc.)
○ supported scopes
○ etc.

46

OAuth/OIDC provider metadata

Examples of metadata document:

● https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
● https://xfer.cr.cnaf.infn.it:8443/.well-known/openid-configuration
● https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server
● https://accounts.google.com/.well-known/openid-configuration

47

INDIGO
IAM

StoRM
WebDAV

https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
https://xfer.cr.cnaf.infn.it:8443/.well-known/openid-configuration
https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server
https://accounts.google.com/.well-known/openid-configuration

{
 introspection_endpoint: "https://iam.cloud.infn.it/introspect",
 scopes_supported: ["openid", "profile", "email", … , "offline_access"],
 issuer: "https://iam.cloud.infn.it/",
 userinfo_encryption_enc_values_supported: ["XC20P", "A256CBC+HS512", … , "A128CBC+HS256"],
 id_token_encryption_enc_values_supported: ["XC20P", "A256CBC+HS512", … , "A128CBC+HS256"],
 authorization_endpoint: "https://iam.cloud.infn.it/authorize",
 device_authorization_endpoint: "https://iam.cloud.infn.it/devicecode",
 claims_supported: [
 "sub", "name", "preferred_username", "given_name", "family_name",
 "middle_name", "nickname", "profile", "picture", "zoneinfo", "locale",
 "updated_at", "email", "email_verified", "organisation_name", "groups"],
 op_policy_uri: "https://iam.cloud.infn.it/about",
 token_endpoint_auth_methods_supported: [
 "client_secret_basic", "client_secret_post", "client_secret_jwt", "private_key_jwt", "none"],
 token_endpoint: "https://iam.cloud.infn.it/token",
 response_types_supported: ["code", "token"],
 grant_types_supported: ["authorization_code", "implicit", "refresh_token", "client_credentials",
 "password", "urn:ietf:params:oauth:grant-type:token-exchange", "urn:ietf:params:oauth:grant-type:device_code"],
 revocation_endpoint: "https://iam.cloud.infn.it/revoke",
 userinfo_endpoint: "https://iam.cloud.infn.it/userinfo",
 op_tos_uri: "https://iam.cloud.infn.it/about",
 token_endpoint_auth_signing_alg_values_supported: ["HS256", "HS384", … , "PS512"],
 require_request_uri_registration: false,
 code_challenge_methods_supported: ["plain", "S256"],
 id_token_encryption_alg_values_supported: ["RSA-OAEP-512", "RSA-OAEP", … , "RSA-OAEP-384"],
 jwks_uri: "https://iam.cloud.infn.it/jwk",
 subject_types_supported: ["public", "pairwise"],
 id_token_signing_alg_values_supported: ["HS256", "HS384", … , "none"],
 registration_endpoint: "https://iam.cloud.infn.it/iam/api/client-registration",
}

48

OIDC userinfo endpoint

The UserInfo endpoint is an OAuth 2.0 protected resource where client
applications can retrieve a JSON object that contains claims about the logged in
end-user. The sub member represents the subject (end-user) identifier.

The content of this JSON object can overlap with the content of an ID token.

Clients must present a valid access token to retrieve the claims.

The UserInfo endpoint is
described in the OpenID Connect
Core 1.0 specification.

49

{
 "sub" : "83692",
 "name" : "Alice Adams",
 "given_name" : "Alice",
 "family_name" : "Adams",
 "email" : "alice@example.com",
 "picture" : "https://example.com/83692/photo.jpg"
}

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

50

JSON Web Tokens (JWT)

● JSON Web Token is a compact, self-contained way of securely transmitting information
between parties in a JSON object

● A JWT is represented as a sequence of URL-safe parts separated by period (“.”)
characters. Each part contains a base64url-encoded value.

● The number of parts in the JWT is dependent upon the representation of the resulting
JSON Web Signature (JWS) using the JWS Compact Serialization or JSON Web
Encryption (JWE) using the JWE Compact Serialization

○ Typically: header, payload, and signature

● The payload of the JWT is encoded in token claims

● JWTs are typically signed and, if confidentiality is a requirement, can be encrypted

● Main specification: RFC 7519

JSON Web Tokens (JWTs)

51

https://www.rfc-editor.org/rfc/rfc7519

JWT: Header.Payload.Signature

Example of encoded token

eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJ3bGNnLnZlciI6IjEuMCIsInN1YiI6IjBmZD
c2YjNjLWMzZjEtNDI4MC1iZTNjLTVlYmVhZDgxYzZkNiIsImF1ZCI6Imh0dHBzOlwvXC93
bGNnLmNlcm4uY2hcL2p3dFwvdjFcL2FueSIsIm5iZiI6MTY2OTEyNzI3Nywic2NvcGUiOiJ
zdG9yYWdlLnJlYWQ6XC8iLCJpc3MiOiJodHRwczpcL1wvd2xjZy5jbG91ZC5jbmFmLmlu
Zm4uaXRcLyIsImV4cCI6MTY2OTEzMDg3NywiaWF0IjoxNjY5MTI3Mjc3LCJqdGkiOiI5Z
DE0NGRhMC1hMTQ5LTQwZTItYWM3NS01MjM0YzFjOTcyODIiLCJjbGllbnRfaWQiOiJl
YjllMWNjMi1mNWUxLTRhNGItYjk2Ny1iY2NlYTI2NmYwOWIifQ.YbsCossZBloBxJBgk9D
-IdVuAzm67rl_MVVdp8j4bXicLgPCM-6Wdze2VMzR6Nw0KMCBXhs59e5glgq0Fr5kagrp
Pjuua2sHX5ul84SNvlgoKMwSn_NIDXSO9fIaDIIuelrSgT1qOTSiMV5M_U4VpWjOimpYm
9fxmLSSIZT59MU

52

JWT: Header.Payload.Signature

Example of decoded token

53

Header

$ echo $AT | cut -d. -f1 |
base64 -d 2>/dev/null | jq

{
 "kid": "rsa1",
 "alg": "RS256"
}

Payload

$ echo $AT | cut -d. -f2 | base64 -d
2>/dev/null | jq

{
 "wlcg.ver": "1.0",
 "sub":
"0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1669127273,
 "scope": "storage.read:/",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669130873,
 "iat": 1669127273,
 "jti":
"2222be79-e218-442b-9389-c741c5b95da2",
 "client_id":
 "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

Signature

$ echo $AT | cut -d. -f3

Zcamp7C40T4oygiO9_ua6oASnE
TYvkZhr8x_OredqLQagryptTwl
iDJRcCA2L8Uff_Tyh8KxKJsc1e
k86pGEZnkckFcfKscNJQyg8qKt
4plTDpxUkMV0ficF--IFOK3ACl
u18kWSG1pc85IGl8r64qF5e46o
fHjblGDnQAz06bc

JWT utilities

54

https://jwt.io/
Useful JWT decoders

● https://jwt.io/
● https://github.com/troyharvey/jwt-cli

https://jwt.io/
https://jwt.io/
https://github.com/troyharvey/jwt-cli

JWT claim names

55

Typical registered claim names (i.e. a set of basic claims defined by the JWT standard)

● “iss” (Issuer): the principal (Authorization Server/OpenID Provider) that issued the JWT (e.g., iam.cloud.infn.it)
● “sub” (Subject): the principal that is the subject of the JWT (e.g., a unique ID linked to an IAM account)
● “aud” (Audience): identifies the recipients that the JWT is intended for (e.g., hostname of a RUCIO instance)
● “exp” (Expiration time): identifies the expiration time after which the JWT MUST NOT be accepted by resources
● “nbf” (Not before): identifies the time before which the JWT MUST NOT be accepted by resources
● “iat” (Issued at): identifies the time at which the JWT was issued
● “jti” (JWT ID): provides a unique identifier for the JWT

Additional INDIGO IAM claims (SPOILER)

● “client_id”: ID of the client which requests the token
● “scope”: list of token capabilities
● “groups”: list of groups the user is member of

OAuth2 token validation

56

The Resource Server validates the access
token:

● through offline validation
○ no credentials needed → no need to register

the Resource Server on the Authorization
Server

○ token is parsed and the signature is verified
with the public key exposed by the AuthZ
Server

● sending the token to the introspection endpoint
○ means the Resource Server is registered on the AuthZ Server and provide

its credentials in order to do this

○ the answer is valid: true/false

SECURITY
TOKEN SERVICE

API

API

API

Is this client allowed to do that?

Resource Server

Authorization Server

The call to the introspection
endpoint

JWT offline validation

The Offline Validation of a JWT means:

● check that the current time is before the time represented by the “exp” claim

○ delays of few minutes are allowed to account for clock skew

● the authorization server issuer identifier MUST exactly match the value of the "iss" claim

● the signature MUST be checked using the algorithm specified in the JWT "alg" Header

Parameter

○ the well-known endpoint of the AuthZ Server shares its public/symmetric key through

the jwks_uri field

● if validation is performed by the Resource Server, the “aud” claim must contain a resource

indicator value corresponding to the Resource Server itself

57

Section 4 of RFC 9068

https://www.rfc-editor.org/rfc/rfc9068#section-4

Examples of scopes

Standard commonly used OAuth/OIDC scopes

● openid signal that the Client wants to receive authentication information
about the user → the ID Token

● profile used to request profile information (name, address, etc)

● email used to request access to the user’s email

● offline_access used to request refresh tokens

58

Proof Key for Code Exchange (PKCE)
and Authorization Code Flow

59

The Authorization Code Flow

60

● The Authorization Code flow supports both OAuth and OIDC scenarios

○ The openid scope augments the OAuth Authorization Code flow with OIDC features

● The client application is known as a confidential client
○ Confidential clients run in a restricted environment (e.g., a server environment)

○ Confidential clients have access to a secret, allowing them to authenticate to the AS

● The authorization code is protected against abuse

○ A confidential client needs to authenticate to exchange an authorization code

○ Authorization codes should be short-lived and should only be valid for one-time use

An Authorization Code INJECTION ATTACK

The Authorization Code
flow relies on the
insecure front channel
to relay the code and
this could have
consequences →

Proof Key for Code
Exchange (PKCE)
helps protect the
integrity of the
Authorization Code
flow

61

Initialize the flow with
the AuthZ Server by

redirecting the browser

62

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

The goal of PKCE
is to ensure that the
client that
exchanges the code
in step 8 is the
same client that
initializes the flow in
step 2

Initialize the flow and
include the code

challenge

63

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant with PKCE

Request that triggers
the start of the flow

1

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5

Redirect back to the
application and send

the authorization
code 6

2

Generate a random value
(code verifier) and
associate it with the

user’s session (e.g. keep
in a cookie)

Calculate the SHA256
hash of the code verifier

(code challenge)

Store the code
challenge along with the

authorization code

64

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization
code and include the

code verifier
8

Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

Calculate the SHA256
hash of the code verifier

and compare to the
stored code challenge

Authorization Code Grant with PKCE

Initialize the flow with
the AuthZ Server by

redirecting the browser

65

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

2

https://iam.cloud.infn.it/authorize
?response_type=code
&scope=openid profile email
&client_id=901C887F-EB2E-4957
&redirect_uri=https://webapp.com/callback
&code_challenge=F455…A353DC → the code challenge (hash of code verifier)
&code_challenge_method=S256 → the hash function

 The authorization request (a redirect to the AuthZ Server)2 3

Initialize the flow with
the AuthZ Server by

redirecting the browser

66

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

POST https://iam.cloud.infn.it/oauth/token

 grant_type=authorization_code
 &client_id=901C887F-EB2E-4957

&client_secret=60DRv0g…0V0SWI
&redirect_uri=https://webapp.com/callback
&code=ySVyktqNkeEKJyyIj0K…
&code_verifier=D0Hpp1yiK0iElVij…K8HBZB → the code verifier from step 2

 The request to exchange the authorization code8

Proof Key for Code Exchange (PKCE)

67

● PKCE consists of a code verifier and a code challenge
○ The code verifier is a cryptographically secure random string

■ Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] - . _ ~

○ The code challenge is a base64 urlencoded SHA256 hash of the code verifier

■ The hash function uniquely connects the code challenge to the code verifier

■ The code verifier cannot be derived from the code challenge

● PKCE ensures that the same client intializes and finalizes the flow
○ PKCE was originally intended to secure flows of public clients (no client authentication)

○ Today, PKCE is a recommended best practice to guarantee flow integrity

● PKCE replaces the OAuth state parameter or OIDC nonce for security

68

Token based Authorization

Token-based Authorization

We understood that:

● to access resources/services → a Client application needs an Access Token
● to identify a user → a Client applications needs an ID Token
● the tokens are obtained from an Authorization Server|OIDC Provider using standard

OAuth|OIDC flows

Authorization is performed at the Resource Server level, leveraging info extracted from
the token:

● Identity attributes: e.g., groups included into ID token (and optionally also into
access token → it can contain whatever the provider wants)

● Scopes: capabilities linked to access tokens at token creation time (each provider
can define its own scopes)

69

Identity-based vs Scope-based Authorization

Identity-based authorization

● the ID token brings information about attribute
entitlement (e.g., group/role membership)

● the service maps these attributes to a local
authorization policy

Scope-based authorization

● the access token brings information about which
actions should be authorized at a service

● the service needs to understand these
capabilities and honor them

● the authorization policy is managed at the VO
level (i.e., IAM)

70

Identity-based vs Scope-based Authorization

71

The two models can coexist, even in
the context of the same application

identity based AuthZ →

scope based AuthZ →

Long-Term access with Refresh Tokens

72

Refresh Token flow

● RFC-6749 Section 1.5

● The application acts on behalf of a user and get a new access token without any user
interaction → e.g. to refresh an Access Token that is about to expire

● It starts with an authenticated POST to the Authorization Server token endpoint

○ Client must authenticate
○ A valid Refresh Token must be provided
○ A new Access Token and possibly an updated Refresh Token are returned

● A Refresh Token request can be performed in order to change the audience claim in
place of using the token exchange flow (we’ll see it later)

● The flow authorization grant is a refresh token, obtained after an authorization flow
(e.g. code, see next slide)

73

https://www.rfc-editor.org/rfc/rfc6749#section-1.5

Initialize the flow with
the AuthZ Server by

redirecting the browser

74

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code and

returns the access
token and/or id token9

API request with the
access token

10
Validates the token +

API response 1
1

2

https://iam.cloud.infn.it/authorize
?response_type=code
&scope=openid profile email offline_access → ask for a refresh token too
&client_id=901C887F-EB2E-4957
&redirect_uri=https://webapp.com/callback
&code_challenge=F455…A353DC
&code_challenge_method=S256

 The authorization request (a redirect to the AuthZ Server) if we want a refresh token too2 3

Initialize the flow with
the AuthZ Server by

redirecting the browser

75

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Authorization Code Grant
(Recommended for Most Apps)

Request that triggers
the start of the flow

1
2

Request to the AuthZ
server to start the flow 3 No active sessions,

who are you? please
authenticate4

I am Enrico with
password Gengar17! 5 Good! Redirect back

to the application and
send the authorization

code 6Follow the redirect to
the application/client
callback endpoint

7 Request the AuthZ
Server to exchange the
received authorization

code

8 Validates the
authorization code

and returns the
access|id tokens and

the refresh token
9

API request with the
access token

10
Validates the token +

API response 1
1

{
 “id_token”: “eyJhbGciOiJIUzI…WiSA68dGRo”,
 “access_token”: “eyJhbGciOiJIUzI…zMNl0_QntNo”,
 “refresh_token”:
“eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIzZjU1NGQyZ…ZDc1Yjg2NWIifQ.VNptQ-X-0TS8_
TN3sOVMcrhEYuhRk0IjzMNl0_QntNo”
}

 The response from the OpenID Provider9

Refresh Token concepts

● The refresh token lifetime is totally decoupled from the lifetime of the
authenticated user session within which the grant was performed

● Even if the expiration time associated with a refresh token is known, the client
cannot assume it’s always valid

○ a user could revoke consent
○ the resource server might change its local policy (e.g. accepting only access tokens obtained

via multi-factor authentication from a certain moment on)
○ client code must have an appropriate error management logic

● Refresh Tokens are Client specific
○ i.e., a refresh token issued to Client A cannot be used by Client B
○ instead, this use case is supported by the token exchange flow

76

Request new access
token with the refresh

token and client
authentication

77

Client AuthZ Server Resource Server

Refresh Token Flow

1

API

Returns the new access
token (and eventually a

new refresh token)

1. The client application
decides when to use a
refresh token to get new
access tokens

2

API request with the
access token Reject the expired

access token
X

One option is to use the expires_in
parameter in the token
response to figure out when the
access token expires.
Another option is to monitor error
responses from the API
when an expired token is rejected.

API request with the
new access token Validate the token and

return API response
v

Request new access
token with the refresh

token and client
authentication

78

Client AuthZ Server Resource Server

Refresh Token Flow

1

API

Returns the new access
token (and eventually a

new refresh token)
2

API request with the
access token Reject the expired

access token
X

API request with the
new access token Validate the token and

return API response
v

POST https://iam.cloud.infn.it/oauth/token

 grant_type=refresh_token → indicates the refresh token flow
 &refresh_token=eyJhbGciO…J9.eyJzdWEYuntNo
 &scopes=api.read → this MUST be a subset of the original request

&audience=https://webapp.org/

 The token authenticated request using client credential flow1

Refresh Token Lifetimes

● The exact refresh token lifetime is at the discretion of the provider
○ Refresh token lifetimes in real-world scenarios can be hours, months, or eternity
○ The provider can change its lifetime policy at will, or make it dependent on the type of client

● Refresh tokens can also be revoked
○ Clients can revoke refresh tokens when they no longer need them
○ Users can often revoke refresh tokens to revoke a client's authority to act on their behalf

● When a refresh token is no longer valid → re-authentication is necessary
○ The only way for the client to regain access is by running a new Authorization Code flow
○ This often includes explicitly requesting user involvement

79

Handling Refresh Tokens at the client

● The refresh token should be considered as sensitive as user credentials
○ Using the refresh token requires client authentication

● A minimum security requirement is guaranteeing confidential storage
○ This approach fails if an attacker gains access to the encrypted data and the keys

80

The Client Credentials Flow

81

The OAuth 2.0 Client Credentials Flow

82

● The client is accessing the API directly, on its own behalf
○ Client authentication is required (i.e. client credential flow is not enabled for public clients)

● This is an OAuth 2.0-only flow, not an OpenID Connect flow → no user involved
○ No additional authorization request is needed (i.e. no authorize endpoint is involved into this flow)
○ The authorization grant does not require intervention of a user (i.e. no login requested)
○ The consent page is not shown → user does not have to authorize the Client app to access its data

● The access token issued by the AuthZ Server represents the client's authority
○ the sub claim is the client unique identifier

● The Client Credentials flow only works with confidential clients
○ Confidential clients need to run in a secure environment (server-side systems)

● A Refresh Token should not be issued in a client credential request

RFC-6749 # Section 4.4

https://www.rfc-editor.org/rfc/rfc6749#section-4.4

83

Client AuthZ Server Resource ServerAPI

Client Credentials Grant

Request the AuthZ
Server to get an
access_token

Authenticate the client
and returns the access
token representing the

authority to access the
API

API request with the
access token Validates the token +

API response 4

3

1

2

POST https://iam.cloud.infn.it/oauth/token

 grant_type=client_credential → indicates the client credentials flow
 &client_id=901C887F-EB2E-4957

&client_secret=60DRv0g…0V0SWI

 The token authenticated request using client credential flow1

84

Client AuthZ Server Resource ServerAPI

Client Credentials Grant

Request the AuthZ
Server to get an
access_token

Authenticate the client
and returns the access
token representing the

authority to access the
API

API request with the
access token Validates the token +

API response 4

3

1

2

{
 “access_token”: “eyJhbGciOiJIUzI…zMNl0_QntNo”, -->
 “token_type”: “Bearer”,
 “expires_in”: 3600,
}

 The response from the Authorization Server2

{
 # sub is the client id
 "sub": "901C887F-EB2E-4957",
 "scope": "api.read",
 "iss": "https://iam.infn.it/",
 "exp": 1669832797,
 "iat": 1669829197,
 "jti": "57a2e594-f212-4183"
}

The Device Code Flow

85

Initialize flow by calling
the /devicecode

endpoint

86

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Device Code Flow

Return URL and user
code and a device

code
1

2

Open URL in browser 4 No active sessions, who
are you? please

authenticate5I am Enrico with
password Gengar17! 6 Allow the client app

access?7

Response with the
access token and/or id

token and/or refresh
token

9

API request with the
access token

10 Validates the token +
API response

Show URL and user
code and start polling

the result using the
device code3

1
1

Insert user code and
authorize access 8

3b

3b

Authenticate user with
the id token

Flow Completed

Initialize flow by calling
the /devicecode

endpoint

87

Resource Owner
(Browser)

Client AuthZ Server Resource ServerAPI

Device Code Flow

Return URL and user
code and a device

code
1

2

Open URL in browser 4 No active sessions, who
are you? please

authenticate5I am Enrico with
password Gengar17! 6 Allow the client app

access?7

Response with the
access token and/or id

token and/or refresh
token

9

API request with the
access token

10 Validates the token +
API response

Show URL and user
code and start polling

the result using the
device code3

1
1

Insert user code and
authorize access 8

3b

3b

Authenticate user with
the id token

Flow Completed

{
 "user_code": "_ZGNRL",
 "device_code": "8aee8fd6-4f64-4630-99eb-7917ca355f21",
 "verification_uri_complete":
"https://iam.cloud.infn.it/device?user_code\u003d_ZGNRL",
 "verification_uri":"https://iam.cloud.infn.it/device",
 "expires_in":600
}

Device code flow

● RFC 8628

● Used in place of the authorization code flow when the Client can not easily
trigger a browser-based authorization

○ the authorization to access protected resources happens on a separate device

● Requirements for the device code flow:
○ the device is able to display or otherwise communicate an URI and code sequence to the user
○ the user has a secondary device (e.g., personal computer or smartphone) from which they can

process the request

● Clients that use Device flow won’t receive incoming requests that notify them about
the given grant, so Clients must poll the authorization server repeatedly until user
completes the approval process

88

https://www.rfc-editor.org/rfc/rfc8628

Device code flow

● The authorization grant is a code
○ The code has to be requested at the device code endpoint exposed by the AS
○ The device code endpoint can be retrieved from the well-known endpoint
○ The code is used to obtain an Access Token

● Device code flow supports both public and confidential clients

● No back-channel interaction between the Client and the Authorization Server

89

The Token Exchange flow

90

Token exchange

● RFC 8693

● This flow has been designed to satisfy the needs
to access resources hosted by other downstream
services on behalf of the user

○ This flow allows Resource Server A to
request the exchange of AT1 with AT2 (and
potentially a RT2 to renew such AT2) and
make calls to a backend service C on behalf
of the requesting user B

○ the Resource Server A is an OAuth 2 Client
of the AS

● The exchanged token and the new token should be requested by two different Clients

91

A C

B

https://www.rfc-editor.org/rfc/rfc8693

User wants to access the
API exposes by

Resource Server B using
an access token

obtained with
Authorization Code flow

92

Client AuthZ Server Res. Server A

Validates client
credentials and grants a
new access token that

allows the registered
Resource Server A
to access Resource

Server B Receives the access
token and uses to

request user information
from Resource Server B

Resource Server BClientResource Owner
(Browser)

Request Resource
Server A to access the

API of Resource Server
B providing the access

token

1

Sends request to the
AuthZ Server to

exchange the received
access token for a new

scoped token

2

3

4
Validates the token

and returns the user data
5

Token exchange concepts

93

● The new access token:
○ is more narrowly scoped for the Resource Server B
○ has an audience different from the original token (from Resource Server A to Resource Server B)

● Terminology:
○ subject token represents the subject access token that the Client wants to exchange

■ The act of performing a token exchange has no impact on the validity of the subject token

● Two main scenarios:
○ impersonation vs delegation
○ but “delegation and impersonation are not inclusive of all situations. When a principal is acting directly

on its own behalf, for example, neither delegation nor impersonation are in play. They are, however, the
more common semantics operating for token exchange and, as such, are given more direct treatment in
this specification.” from RFC

Impersonation vs. delegation
Resource Server A impersonates Resource Owner:

● A has all the rights (determined by the scopes) of Resource Owner
● A is indistinguishable from B
● The process allows a subject to change to a different subject

○ Resource Server B cannot determine by looking at the token the identity of the Resource Server A

Resource Owner delegates Resource Server A

● Resource Server A still has its own identity, which is separated from the Resource Owner one
● The optional actor_token used within the Token Exchange request represents Resource Server A
● When Resource Server A interacts within Resource Server B, it is explicit that it’s representing the Resource Owner
● The Resource Owner can decide to only delegate certain rights

to Resource Server A
● The token act claim in the Token Exchange response is a JSON object

which identifies the acting party to whom authority has been delegated.
It provides a representation of a delegation chain

○ members in the JSON object are claims that identify the actor (e.g. the sub
claim)

○ a chain of delegation can be expressed by nesting one act claim within
another: the last recent actor is the most deeply nested

94

From RFC 8693

https://www.rfc-editor.org/rfc/rfc8693#section-appendix.a

Token exchange: use case

Example: moving some of my files with RUCIO +
FTS

● I give RUCIO permission to act on my behalf → Rucio
registered client has token exchange grant type
enabled

● RUCIO then delegates the file transfer task to FTS, which
still acts on my behalf to trigger third-party transfers
across Storage Elements

○ Both RUCIO and FTS clients act on my behalf

● Different scopes are needed at different level of the
infrastructure

● Token exchange allows to provide tokens with
minimum privileges to each service without requiring
that big fat tokens are used at the top of the chain

95

From WLCG CE Hackathon

https://indico.cern.ch/event/1032742/

The token exchange flow

● User B wants to access the resource C.
● Since resource A is an OAuth Client of the AS enabled for

token exchanges, B requests access to A using a bearer
token issued by AS.

96

From section 2.3 of RFC 8693

{
 "aud": "https://frontend.example.com",
 "iss": "https://as.example.com",
 "exp": 1441917593,
 "iat": 1441917520,
 "sub": "user-b-id",
 "scope": "resource-a-scope"
}

frontend.example.com backend.example.com

A C

B

 GET /resource HTTP/1.1
 Host: frontend.example.com
 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

The bearer token is used by
Client as grant

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

● Then Resource A requests for a token exchange properly
scoped for Resource C

97

From section 2.3 of RFC 8693

frontend.example.com backend.example.com

A C

B

POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Authorization: Basic cnMwODpsb25nLXNlY3VyZS1yYW5kb20tc2VjcmV0
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &resource=https%3A%2F%2Fbackend.example.com%2Fapi
 &subject_token=accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC
 &subject_token_type=
 urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Aaccess_token

resource parameter indicates
the location of the backend
service (similar to audience)

The bearer token becomes the
subject token

HTTP basic authentication to AS using the
credentials of the OAuth Client/Resource A

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

● The AS validates both the Resource A client credentials and
the subject token, and issues a new access token to
Resource A (impersonation)

98

From section 2.3 of RFC 8693

frontend.example.com backend.example.com

A C

B

HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6Ijll
 ciJ9.eyJhdWQiO..oiYXBpIn0.40y3ZgQedw6rxf59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIWvmDCM
 y5-kdXjwhw",
 "issued_token_type": "urn:ietf:params:oauth:token-type:access_token",
 "token_type":"Bearer",
 "expires_in": 3600
 }

The access token is of Bearer type
It’s opaque to the Client → it only has to
be sent in another HTTP request

{
 "aud": "https://backend.example.com",
 "iss": "https://as.example.com",
 "exp": 1441917593,
 "iat": 1441917533,
 "sub": "resource-a-id",
 "scope": "resource-c-scope"
}

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

● The AS validates both the Resource A client credentials and
the subject token, and issues a new access token to
Resource A (delegation)

99

From section 2.3 of RFC 8693

frontend.example.com backend.example.com

A C

B

HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6Ijll
 ciJ9.eyJhdWQiO..oiYXBpIn0.40y3ZgQedw6rxf59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIWvmDCM
 y5-kdXjwhw",
 "issued_token_type": "urn:ietf:params:oauth:token-type:access_token",
 "token_type":"Bearer",
 "expires_in": 3600
 }

The access token is of Bearer type
It’s opaque to the Client → it only has to
be sent in another HTTP request

{
 "aud": "https://backend.example.com",
 "iss": "https://as.example.com",
 "exp": 1441917593,
 "iat": 1441917533,
 “sub”: "user-b-id"
 “act”: {
 "sub": "resource-a-id",
 },
 "scope": "resource-c-scope"
}

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

● Now Resource A can finally use the newly acquired Access
Token to access the Resource C using HTTP bearer
authentication

100

From section 2.3 of RFC 8693

frontend.example.com backend.example.com

A C

B

GET /api HTTP/1.1
 Host: backend.example.com
 Authorization: Bearer eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQ
 iOiJodHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2
 FzLmV4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1M
 zMsInN1YiI6ImJkY0BleGFtcGxlLmNvbSIsInNjb3BlIjoiYXBpIn0.40y3ZgQe
 dw6rxf59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIW
 vmDCMy5-kdXjwhw

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

Choosing the Right Grant Type

To select the best grant type, consider these factors:

● Client Type → Confidential clients (backend apps) vs. public clients (mobile, SPA).

● Security Needs → Use PKCE for public clients and client credentials for
machine-to-machine authentication.

● User Experience → Use device code flow for limited-input devices and
authorization code flow for web apps.

● Use Case Mapping → Web apps favor authorization code, while backend services
use client credentials.

101

102

Dynamic Client Registration

OAuth Client registration

● Clients which interact with an Authorization Server need to be registered
● When a client is registered, it is assigned a unique identifier (client_id) and a

credential, either
○ a password (client_secret), or
○ an assertion (in the form of a JWT)

Credentials are required in most of the OAuth/OIDC flows or to access
specific endpoints, where different privileges may be assigned to different
Clients

● Client registration is necessary to integrate any application that needs to
“drive” an authorization flow
○ e.g., if your web app needs to authenticate users through a “Login” button, you

need to register a Client

103

OAuth Client Types

RFC-6749 # section-2.1

confidential: clients capable of maintaining the confidentiality of their credentials
(e.g., client implemented on a secure server with restricted access to the client
credentials)

public: like mobile apps or single-page applications (Single Page Applications),
are incapable to keep a client secret, to keep the confidentiality of their credentials

104

https://tools.ietf.org/html/rfc6749#section-2.1

Handling client credentials

Client credentials MUST be maintained confidential

● not stored in Docker images or source code
○ don’t commit them on your git repo!
○ use ENV variables or other secret management mechanisms to pass down these secrets to

your application

Follow recommendations in the client app security section of the OAuth security
recommendations:

https://tools.ietf.org/html/rfc6819#section-5.3

105

https://tools.ietf.org/html/rfc6819#section-5.3

Client registration on OIDC

● through the registration endpoint exposed by the well-known endpoint

○ i.e. registration_endpoint:
"https://iam-dev.cloud.cnaf.infn.it/iam/api/client-registration"

● the dynamic registration can be anonymous or not

○ the OIDC provider can restrict the access to this endpoint

○ a registration access token is returned and the owner of this token can manage the client

○ these are the dynamic clients

106

Example of client registration via registration endpoint

Prepare a JSON file with the Client details, for instance
$ cat client_req.json
{
 "redirect_uris": [

"https://myapp.org/callback"
],
 "client_name": "client-demo",
 "contacts": [

"enrico.vianello@cnaf.infn.it"
],
 "token_endpoint_auth_method": "client_secret_basic",
 "scope": "address phone openid email profile offline_access",
 "grant_types": [

"refresh_token",
"authorization_code"

],
 "response_types": [

"code"
]
}

107

Example of client registration response
$ curl https://iam-dev.cloud.cnaf.infn.it/iam/api/client-registration -H "Content-Type: application/json" -d @client_req.json 2>/dev/null
| jq
{
 "client_id": "90b4f677-2551-4852-935e-8f785c583572",
 "client_secret": "xxx",
 "client_name": "client-demo",
 "redirect_uris": [

"https://myapp.org/callback"
],
 "contacts": [

"enrico.vianello@cnaf.infn.it"
],
 "grant_types": [

"authorization_code",
"refresh_token"

],
 "response_types": [

"code"
],
 "token_endpoint_auth_method": "client_secret_basic",
 "scope": "openid profile offline_access email",
 "reuse_refresh_token": true,
 "dynamically_registered": true,
 "clear_access_tokens_on_refresh": true,
 "require_auth_time": false,
 "registration_access_token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3O…TE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c”,
 "registration_client_uri": "https://iam-dev.cloud.cnaf.infn.it/iam/api/client-registration/90b4f677-2551-4852-935e-8f785c583572",
 "created_at": 1669116921824
}

108

towards OAuth 2.1

109

What’s new in OAuth2.1

● OAuth 2.1 (draft)

○ it is a draft with the aim of consolidating and simplifying the most commonly used features of
OAuth 2.0

● Some new features of OAuth 2.1

○ PKCE (Proof Key for Code Exchange) is required for all OAuth Clients using the
authorization code flow

○ redirect URIs must be compared using exact string matching → no wildcards in the URI
○ the implicit grant is omitted from this specification
○ the resource owner password grant is omitted from this specification
○ using bearer tokens in the query string of URIs is forbidden

110

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07
https://www.rfc-editor.org/rfc/rfc7636

that’s all

111

Useful references

RFC
● The OAuth 2.0 Authorization Framework (6749)
● JWT (7519)
● Bearer token usage (6750)
● OAuth 2.0 Device Authorization Grant (8628)
● Token exchange (8693)
● Proof Key for Code Exchange (7636)
● JWT for client authentication (7523)
● OpenID Connect 1.0

Draft
● The OAuth 2.1 Authorization Framework
● OpenID Connect federation

Other
● OAuth 2.0 and OpenID Connect video (OktaDev)

112

https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc8628
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7523#section-2.2
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07
https://openid.net/specs/openid-connect-federation-1_0.html
https://www.youtube.com/watch?v=996OiexHze0

Part 2: Hands-on
● Device Code Flow
● Client Credentials Flow
● Refresh Flow
● Token Exchange Flow

113

Now it’s your turn to make practice

Backup

114

Authorization code flow

● Section 4.1 of RFC 6749 (OAuth 2)

● Section 3.1 of the OpenID Connect spec

● It’s the recommended flow for server-side applications that can maintain the
confidentiality of client credentials

○ recommended also for any client when combined with PKCE

115

https://www.rfc-editor.org/rfc/rfc6749#section-4.1
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://www.rfc-editor.org/rfc/rfc7636

Authorization code flow

OAuth 2.0 and OpenID Connect video from OktaDev

116

https://www.youtube.com/watch?v=996OiexHze0

