Introduzione a OAuth 2.0 e
OpeniD Connect

Enrico Vianello, Federica Agostini, Roberta Miccoli

“Panoramica su OAuth2/OpenID Connect e sue applicazioni I N F N
tramite il servizio INDIGO IAM” ,
12-14 Maggio 2025, Frascati (Roma)

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

Part 1: The protocols

a step by step overview of the
protocol concepts

Introduction

OAuth 2.0 + OpenID Connect
Authorization Code Flow

The well-known endpoints
JSON Web Tokens (JWT)
PKCE

Token based Authorization
Long-Term access with Refresh
Tokens

Client Credentials Flow
Device Code Flow

Token Exchange Flow
Dynamic Client Registration
OAuth 2.1

Introduction

Once upon a /agih

You had an email,
maybe a Facebook.
Life was good.

[hen

you needed an account for
ordering pizza,

buying socks, /»‘ 247742C ™ ‘/ T.,,anE
posting vacation selfies, !) prgg /
renting cars, S sl woPDS
playing yet another game, ... -y '/ w\
= \

... and suddenly,
you had 37 usernames

and at least 4 variations of the same password
one of which might be “Password123!”

) sign in with GitHub

G Sign in with Google

the hero we needed

The problem we’'re solving

A user has access to a resource
and wants to allow a third party to have the same access
without sharing their credentials/passwords

In the “old days” this could be solved by the third party saving the username and
password of the user, which would allow the third party to impersonate the user
when accessing the resource.

But that is less than optimal because of two points:

e if the user changes the password, all third parties lose access

e there’s no guarantee that an organization/service will keep your credentials
safe, or guarantee their service won’t access more of your personal
information than necessary

OAuth 2.0 + OpeniID Connect

Open Authorization Framework

Internet Engineering Task Force (IETF) D. Hardt, Ed.

Request for Comments: 6749
Obsoletes: 5849 October 2012 j it's a long time...
Category: Standards Track

ISSN: 2070-1721

The OAuth 2.0 Authorization Framework

Abstract

The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HTTP service, either on
behalf of a resource owner by orchestrating an approval interaction
between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf. This

specification replaces and obsoletes the OAuth 1.0 protocol described
in REC 5849.

RFC 6749 - https://www.rfc-editor.orqg/rfc/rfc6749

https://www.rfc-editor.org/rfc/rfc6749

Foval iy . RaN I £ - 2
N 2075 j;"znluary 2053k

029
: M. Jon
W. Dennis’ AMICIOSO::
Goog! i Nadalin
ing Task Force (IETF) J. Bradl 8. Can Mlcrosmet
rnet Engineerlng_ 8252 ping Ident Pinpbeu’ £q
IRr;:?Jest for Comments: October | 7 I:e"tity.
Iadle
BCP: 212 : Vb
Updatei;%?st Current Practice OStrace Q4utp i €. Moy ore
atego ‘ Oke, R
TooN: 2070-1721 ks mpe s " Exchang 9
oAuth 2.0 for Native APPS SCurjy, -1
Abstract
3 5 ues
OAuth 2.0 authorlzatiO';gZ:%s.
tertial User < e
through exterfie ils the I d
A t10n e . 3 OWe
i o rstive many updates have fo
RInten this best practice. — -
equeg OAu
Catego, ST 7009 "CC (IETF) th 2.0 Token Introspection
TSSN: 207015902705 Tracy Abstract /
1 AP N. sa“imu‘;."g (was 8t NRY)
Ihis SPeCtfication derines .
-@ authorj i =
OAuth 2.0 Tlzation

b ku::ad Consuling (W22
BAutr 2.0 ;oken and to dete; /
OAuth , tha: anek deployments capy us / =

Strace -0 Tokep, ReVOCati £ u OTrlzation context of oMo Saestorc) g errata ¢
iy o 0 the Protecteq Tesource e o 15,2522 orating

1S documep ;

I

:etrvers whichp OPoses lap 20diton,) .

; lents ¢ i *

Te

incorp
1.0 incoO
: 11 dd D (.:O““ect Gors ¢ the End-!
3 - . y
p €vigy Ows ¢ 1on, nd en\ < the identi®y Of TEC g
the
hi Obtgaj P Op to verify T on about
S allo in Clients f ormatio
Uth, . nables CHENS in
ia Oriza tio, o protocol- 1¢ &a'\n pasic PO of Claims
SeIver that ne OAUth 20 T | 35 1o © 0 and the US€ % ¢ gnne
Needeq ity tayer O 1P U tion Servert & p of ORUh 20 7\ sing OP®
. i identlty OV 4 uthoriZ: o built on O iderations
Abstract isa sm\P‘: med by @ athenticaton DU cons
ect 1 ion P 3 g ity: @ an
1 ken openi® Coﬂ: = mer:\aae‘;_o‘,_“ke manner: o funcnor:::e: the security
Zation pased onthe B s o s B

Example
e You've probably run into a dialog saying something like this:

“ Hey, this app is asking for access to your Facebook account, but won'’t
publish posts on your behalf”

This is a very common pattern is OAuth

Example App would like to post to your friends on

delegation of privileges your behalf.
-II

no shared passwords m

OpenlID Connect

OpenlID Connect extends OAuth to provide a standard identity layer

e i.e. information about who the logged user is and how it was
authenticated

e.g. you could see OAuth 2.0 as the key of your car while OpenID Connect is
your driving license

OIDC provides ability
to establish login sessions (Single-Sign On)

OpenlD Connect specification

12

https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 / OpenlD Connect in action

the TOKEN SERVICE that
Qg knowns users and clients
SECURITY L a—

TOKEN SERVICE and issues valid
credentials/tokens

— a CLIENT can be a lot of things,
*— from a simple piece of software to a

s complex service ﬁ%
MOBILE
Qu - API %
SERVICE n O % o
. a RESOURCE the CLIENT o RN
, wants to access —e = API
‘ — can be a generic API

usek e—— The USER

13

OAuth 2.0 / OpenlD Connect in action

Authenticate the user for me? og

SECURITY

Can | access the API please? TOKEN SERVICE

o

SERVICE

[
MOBILE
APP

l’

a-J

USER

>_

SCRIPT

a CLIENT can ask to the Security
Token Service things like ...

API

API

API

14

OAuth 2.0 / OpenlD Connect in action

OpeniD Connect

l Authenticate the user for me? o*
SECURITY #
T Can | access the API please? TOKEN SERVICE
OAuth 2.0
X MOBILE
Q¢ APP >
SCRIPT

SERVICE
l’

a_J

USER

API

o

API

API

15

OAuth 2.0 / OpenlD Connect in action

OpeniD Connect

l Authenticate the user for me? o*
SECURITY #
T Can | access the API please? TOKEN SERVICE
OAuth 2.0
: o
MOBILE 2

* >
L o NN —) API e
SCRIPT u
SERVICE) Can you handle this for me please? Lt i
. Qn
T API

‘ _’ OAuth 2.0

USER

16

OAuth 2.0 / OpenlD Connect in action

OpeniD Connect

l Authenticate the user for me? o*
SECURITY #
Can | access the API please? TOKEN SERVICE
T Help me out here, is this
OAuth 2.0 client allowed to do that?
—_ | OAuth 2.0
b o
MOBILE ¢¢

3 >
Q* APP — - J API W
SCRIPT
SERVICE f, Can you handle this for me please? Qﬁ Ela
f Lo

T API
‘ _’ OAuth 2.0

USER

Terminology

Relying Party

Client

pr—

‘@ -

SERVICE
9

[]
‘ ﬁ— Resource Owner

:

>

SCRIPT

Authorization Server

OpenliD Provider

SECURITY

- J

USER @

End-User

:

:

K8

TOKEN SERVICE

| Resource Server

1
o

API a
@ =

API

18

OAuth2 / OpenlD Connect roles/terminology (1)

Resource Owner / End-User: A user that owns resources hosted at
‘ a service — You, the owner of your identity, your data, and any
USER actions that can be performed with your accounts.

Client / Relying-Party: The application (or service, script, & vooe -
etc.) that wants to access data or perform actions Lo I (e
on behalf of the Resource Owner. SERVICE sy

SCRIPT

19

OAuth2 / OpenlD Connect roles/terminology (2)

Authorization Server / OpenlID Provider: The application that

knows the Resource Owner and the Client, where the Resource o*
Owner already has an account and authenticates. SECURITY

. . TOKEN SERVICE
It issues tokens to Clients that can be used to access Resource

Owner resources — Resource Server.

o

Resource Server: The Application Programming
API

Q’% Interface (API) or service the Client wants to use
Q% API on behalf of the Resource Owner.

API

20

Overview of use cases for OAuth and OIDC

e An application wants to authenticate users using an external identity provider

o e.g. delegating login to a different identity provider, social login or enterprise SSO
o The client that wants to authenticate the user needs an identity token
o This scenario only uses OpeniD Connect

e An application wants to use an API on behalf of the user

o e.g. accessing an API to retrieve all the contacts of a user
o The client needs an access token to make requests to the API
o This scenario only uses OAuth

e An application wants to authenticate users and access APIs on their behalf

o e.g. a mobile app that authenticates the user and then retrieves all his contacts from
API on his behalf
o The client needs both an identity token and an access token

o This scenario combines OpenlID Connect and OAuth)

Overview of use cases for OAuth and OIDC

OpeniD Connect

l Authenticate the user for me?

T Can | access the API please?

OAuth 2.0

—)
=

X MOBILE
Q* APP >

SCRIPT

SERVICE
9

-

USER

SECURITY

Lk

TOKEN SERVICE

Help me out here, is this
client allowed to do that?

!

| OAuth 2.0

o

) API !
0 7

Can you handle this for me please? b
. w
T API

OAuth 2.0

22

How the parties communicate?

The four actors need a protocol to ‘
securely communicate with each |
other, to allow access to be |
delegated.

SECURITY
TOKEN SERVICE

i

Authorization Server

| Client |

= .

| - | OAuth 2.

MOBILE

———————

| SERVICE
\\\ 9

__

The protocols are called “flows” in

! Q*g APP >~ ! :

Since different applications have
different requirements, there are
four different flows or protocols for
how the actors communicate.

| Resource Server |

:

i 5t
| Qﬁ |
API |

o

OAuth and OIDC flows

Authorization Grant Types

Authorization Flows

the set of steps a client uses to obtain one or more tokens from the
authorization server, for the purpose of accessing a resource

24

OAuth and OIDC flows

Grant Type / Flow name Status

Resource Owner Password Credentials Flow

Discouraged since OAuth 2.1

Authorization Code Flow

Commonly used

Client Credentials Flow

Commonly used

Refresh Token Flow

Commonly used

Device Code Flow

Commonly used

25

the Authorization Code flow

$ o
A Rosourceowner | LCRN—— LE zsener S Resource Server

Request that triggers o
the start Of the ﬂOW Initialize the ﬂOW with
the AuthZ Server by

redirecting the browser
Request to the AuthZ | e recting W)
server to start the flow

1. User opens the Web Application and
tries to access its resources on its
browser and it gets a redirection to
the AuthZ server

Authorization Code Grant
(Recommended for Most Apps)

LT

Initialize the flow with
the AuthZ Server by
redirecting the browser

‘ Resource Owner
(Browser)

Request that triggers o
the start of the flow

o
$$¥ AuthZ Server

No active sessions,

Request to the AuthZ | e
server to start the flow

who are you? please

4. User is prompted to insert its
credentials and to authorize the
usage of its personal data

Authoriz
(Recomme

authenticate

N

INFN

CLOUD....

Welcome to infn-cloud

Sign in with

Local credentials

Not a member?

Apply for an account

s

Apl Resource Server

Approval Required for Test Client

Client for IAM test client app
¥ More inforr

tio

Access to:

A log in using your identity @
[E basic profile information @
email address @

A physical address

4 phone number

O offline access

Remember this decision :

@® remember this decision until | revoke it
(O remember this decision for one hour

() prompt me again next time

Authorizing will redirect to

dev.cloud.cnaf.infn.it/i

client/openid_connect_login

28

‘ Resource Owner
(Browser)

Request that triggers
the start of the flow

Request to the AuthZ

server to start the flow

| am Enrico with
password Gengarl17!

—0-

B {3
T M sz

Initialize the flow with
the AuthZ Server by

redirecting the browser . -
No active sessions,

who are you? please

authenticate

©

5. User insert its credentials and
submit them to the AuthZ Server

Authorization Code Grant
(Recommended for Most Apps)

s

API

Resource Server

29

{3
A oveony WEEEEETE Mo awzse
(Browser)

Request that triggers o
the start Of the ﬂOW Initialize the ﬂOW with
the AuthZ Server by
redirecting the browser

Request to the AuthZ | e > No active sessions,
server to start the flow who are you? please
authenticate
| am Enrico with
e > Good! Redirect back

password Gengarl17! .
to the application and

send the authorization
code

s

API

Resource Server

6. The AuthZ Server authenticates the user and returns a redirect
to the application callback he knows (client is registered) and send
an authorization code within the redirected URL — a temporary

value that only means something to the AuthZ Server

Authorization Code Grant
(Recommended for Most Apps)

30

2%

(Browser)

Request that triggers o
the start Of the ﬂOW Initialize the ﬂOW with
the AuthZ Server by
redirecting the browser

=

Request to the AuthZ | e
server to start the flow

o
$$¥ AuthZ Server

No active sessions,
who are you? please

A

| am Enrico with e
password Gengarl17!

authenticate

Good! Redirect back
to the application and
send the authorization

Follow the redirect to 6
the application/client ’—e—’ Request the AuthZ
callback endpoint Server to exchange the ’—6—'
received authorization
code

code

s

API

Resource Server

8. the Client exchange the received authorization code to obtain
the desired access token (and/or id token)

Authorization Code Grant
(Recommended for Most Apps)

8 33 o
A& Fosoucsowner | |CioRTI R uzsever| m ResourceServer

Request that triggers o
the start Of the ﬂOW Initialize the ﬂOW with
the AuthZ Server by

redirecting the browser . -
No active sessions,

who are you? please
authenticate

Request to the AuthZ | e
server to start the flow

| am Enrico with e

password Gengarl17! > Good! Redirect back

to the application and
send the authorization

. code
Follow the redirect to
the application/client ’_e_’ Request the AuthZ
callback endpoint Server to exchange the * @ g Validates the
received authorization authorization code and
code returns the access

<—@—- token and/or id token

9. the AuthZ Server returns the access token and also an ID
Token if it's an OpenID Provider

(Recommended for Most Apps)
32

8 33 o
A& Fosoucsowner | |CioRTI R uzsever| m ResourceServer

Request that triggers o
the start Of the ﬂOW Initialize the ﬂOW with
the AuthZ Server by

redirecting the browser . -
No active sessions,

who are you? please
authenticate

Request to the AuthZ | e
server to start the flow

| am Enrico with e

password Gengarl17! > Good! Redirect back

to the application and
send the authorization

. code
Follow the redirect to
the application/client ’_e_’ Request the AuthZ
callback endpoint Server to exchange the * @ g Validates the
received authorization authorization code and
code returns the access

<—9—- token and/or id token

API request with the @
access token

10. the Client can finally query the APl endpoint by using the
received access token and grab the original requested data

2 <3
& weovegny KENEEET P s
(Browser)

Request that triggers o
the start Of the ﬂOW Initialize the ﬂOW with

the AuthZ Server by
redirecting the browser
Request to the AuthZ | e g > No active sessions,
server to start the flow who are you? p|ease
authenticate
| am Enrico with .
password Gengar17! e " Good! Redirect back
to the application and
send the authorization
: d
Follow the redirect to coae
the application/client ’—e—’ Request the AuthZ
Server to exchange the ’_Q_’ Validates the

callback endpoint
authorization code and

returns the access

<—9—- token and/or id token

received authorization
code

API request with the @

access token

s

API

Authorization Code Grant
(Recommended for Most Apps)

Resource Server

Validates the token +
API response

34

OAuth2 token validation

The Resource Server validates the access Authorization Server
token: l
. . . o* The call to the introspection
e through offline validation secormy TR endpoint

, , TOKEN SERVICE
o no credentials needed — no need to register

the Resource Server on the Authorization
Server Is this client allowed to do that?

o token is parsed and the signature is verified
with the public key exposed by the AuthZ

Resource Server

Server
e sending the token to the introspection endpoint ﬁ?k l
o means the Resource Server is registered on the AuthZ Server and provide API
its credentials in order to do this ﬁ%
o the answer is valid: true/false Q% API

API
35

o e

o] AuthZ Server arl Resource Server

FoY
(Browser)

API request
— @) nitialize the flow with

Click Login . 9 . the AuthZ Server by
redirecting the browser
Request to the AuthZ | e g > No active sessions,
server to start the flow who are you? please
authenticate
| am Enrico with Note: the difference
. | . .
password Gengar17! 15 Good! Redirect back between OAuth and
to the application and f .
send the authorization PIDC IO_V\{,S IS JUSt
. code semantic
Follow the redirect to
the application/client ’_e_’ Request the AuthZ
callback endpoint Server to exchange the '—@—* Issues and returns the
received authorization access token
code Issues and returns the
—0Q— id token
API request with the @
access token Validates the token +
” API response

Authorization Code Grant
(Recommended for Most Apps)
36

& o
m Resource g:"‘)’;‘s‘:r'; M 4% AuthZ Server apl Resource Server

Request to the AuthZ)
server to start the flow

2 3 The authorization request (a redirect to the AuthZ Server)

https://iam.cloud.infn.it/authorize
?response_type=code - indicates the authorization code flow
&scope=openid profile email — we want an ID token with email/profile info
&client_id=901C887F-EB2E-4957 — the requestor (and registered) client ID
&redirect_uri=https://webapp.com/callback — the endpoint used on step 7
&code challenge=F4554617...A353DC
&code_challenge_method=S256

Authorization Code Grant
(Recommended for Most Apps)
37

& o
m Resource g:"‘)’v’v:'; M 4% AuthZ Server apl Resource Server

6 > Good! Redirect back
to the application and
send the authorization
« T code
— 0~

6 7 The redirect back to the client application

https://webapp.com/callback
?code=ySVyktqNkeEKJyylj0K...

— the temporary authorization code

>

Authorization Code Grant
(Recommended for Most Apps)

38

POST https://iam.cloud.infn.it/oauth/token

grant_type=authorization_code - indicates the code exchange request
&client_id=901C887F-EB2E-4957 — the confidential client exchanging the code
&client_secret=60DRv0g...0VOSWI - the client need to authenticate
&redirect_uri=https://webapp.com/callback — the redirect URI used before
&code=ySVyktqNkeEKJyyljOK... — the authorization code received
&code_verifier=DOHpp1yiKOIiEIVij...KBHBZB
- v

'—e—> Request the AuthZ
Server to exchange the
received authorization

code

-0
—@

Authorization Code Grant
(Recommended for Most Apps)

39

s

o] AuthZ Server APl Resource Server

& reegny W T
(Browser)

9 The response from the OpenlID Provider

{

“jd_token”:
“eyJhbGci0iJIUzIINiIsINR5cCI6IkpXVCI9.eyJzdWIi0iIzZjUINGQYZS1iYWZmLTQXxYmUtYmImZi02MzhhNG
E1OTKONTA1L..YZQtNWUSNjMONzYOM2EZzINO.mH4GSob1lmgxeip37SDiUYXNGeUWIYGfMuWiSA68dGRo”,

“access_token”:
“eyJhbGciOiJIUzIINiIsINR5cCI6IkpXVCI9.eyJzdWIi0iIzZjUINGQyYZS1..Dc1Yjg2NWIifQ.VNptQ-X-0TS8
_TN3sOVMcrhEYuhRkOIjzMN1O_QntNo”

}

~—®—> Validates the

authorization code and
returns the access
token and/or id token

—©® .

Authorization Code Grant
(Recommended for Most Apps)
40

OAuth2 / OpenlD Connect roles/terminology (3)

. BReAD ContATS
(0 (ReaTE (onTACT
DEETE CoNTACT

G’ READ PROFILE

Scope: These are the granular permissions the Clien
wants, such as access to data or to perform actions.

[

https://webapp.com/callback]

Redirect URI: The URL the Authorization Server
will redirect the Resource Owner back to after granting permission to the
Client. This is sometimes referred to as the “Callback URL.”

41

OAuth2 / OpenlID Connect roles/terminology (4)

Richiesta di accesso SPID 2 da
Agenzia delle Entrate

| seguenti dati stanno per essere inviati al fornitore dei servizi

Consent: The Authorization Server takes the

s e Scopes the Client is requesting, and verifies with

Bt the Resource Owner whether or not they want to
give the Client permission.

Client ID: Client identifier within the Authorization Server.

Client Secret: A secret password that only the Client and Authorization Server
know. This allows them to securely share information privately behind the scenes.

42

OAuth2 / OpenlD Connect roles/terminology (5)

Access Token:

e it's a string (— no format required)
e clients use it to make requests to the Resource Server
e it may be a bearer token — those who hold the token can use it

ID Token: :}gﬁgﬁg‘ﬁ_,wﬂagw T22000129

MMMMMMMMMM

e defined only within OIDC and it must be a JWT
e the OAuth Client should be the audience of the token
e it contains information about the user such as name or email address

2

3110. 938568
st

Refresh Token (SPOILER):

it's a string (— no format required)

clients use it to get a new Access Token without the user's interaction
the new access token MUST have a subset of the original granted scopes
never sent to Resource Servers

43

OAuth Bearer token usage

e RFC-6750
e It defines how to use tokens in HTTP requests to access protected resources on Resource Servers

e Any party in possession of a bearer token can use it to get access to the associated resources
(without demonstrating possession of a cryptographic key)

e OAuth bearer token must be used in combination with TLS over HTTP
e Typically, tokens are sent in the Authorization HTTP header, as in the following example HTTP
request

GET / HTTP/1.1 The token!
Host: apache.test.example 4”/”/,,,/»—
Authorization: Bearer eyJraWQiOiJy..rYI

User-Agent: curl/7.65.3
Accept: */*

44

https://www.rfc-editor.org/rfc/rfc6750

The well-known endpoints

OAuth/OIDC provider metadata

e OAuth 2.0/ OpenlD Connect specifications provide a standard way to expose
their configuration

e Information is published at a well-known endpoint

o .well-known/openid-configuration (if OIDC Provider)
o .well-known/ocauth-authorization-server (if AuthZ Server)

e Clients should use this information to know about

location of key used to sign/encrypt tokens — used for token validation
supported grant types/authorization flows

endpoint locations (authorize, token, dynamic client creation, etc.)
supported scopes

etc.

0O O O O O

46

< > G 8 https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration

D e-mails O CNAF O xenon (D UNIBO [High Energy Physics-... (O papers @ PaaSDocs (Jpr

OAuth/OIDC provider metadata =—.uiw.

requestiparameterisupported: true
introspection_endpoint: "https://wlcg.cloud.cnaf.infn.it/introspect"
claims_parameter_supported: false
w scopes_supported:
Examples of metadata document: 5 Sopen cF
1: “profile" INDIGO
2, "email"
° https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration 3 "offline access" IAM
H : . . . 4: "wlcg"
° https://xfer.cr.cnaf.infn.it:8443/.well-known/openid-configuration 5 il
° https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server S ZEZZZZZZZ;,
° https://accounts.google.com/.well-known/openid-configuration 8 "compute. read"
9 "compute.modify"
10: "compute.create"
11: "compute.cancel”
x2: "storage.modify:/"
13¢ "eduperson_scoped affiliation"
« > C 8 https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server 14: “eduperson_entitlement"
15: "eduperson_assurance"
D e-mails O CNAF Oxenon (D UNIBO & High Energy Physics-... (O papers @ PaaSDocs (Jprograms 16: *storage.stage:/"
issuer: "https://wlcg.cloud.cnaf.infn.it/"

JSON RawData Headers : 4
w userinfo_encryption enc_values_supported:

Save Copy CollapseAll Expand All Y/ Filter JSON 0: "XC20P"
issuer: "https://xfer.cr.cnaf.infn.it:8443" 1: "A256CBC+HS512"
token_endpoint: "https://xfer.cr.cnaf.infn.it:8443/o0auth/token" 2: "A256GCM"

v response_types_supported: 3: "A192GCM"

a3 “token® 4: "A128GCM"
v grant_types_supported: StORM -Zi .:izz:z:z:.
BE "client_credentials" WebDAv = EmL
w token endpoint_auth_methods supported: . SR
o: ~gsiavoms? + id_token_encryption_enc values_supported:
0: "XC20P"
i 4 "A256CBC+HS512"
2: "A256GCM"
3: "A192GCM"
4: "A128GCM"

47

https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
https://xfer.cr.cnaf.infn.it:8443/.well-known/openid-configuration
https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server
https://accounts.google.com/.well-known/openid-configuration

introspection_endpoint: "https://iam.cloud.infn.it/introspect",
scopes_supported: ["openid", "profile", "email", .. , "offline_access"],
issuer: "https://iam.cloud.infn.it/",
userinfo_encryption_enc_values_supported: ["XC20P", "A256CBC+HS512", .. , "A128CBC+HS256"],
id_token_encryption_enc_values_supported: ["XC20P", "A256CBC+HS512", .. , "A128CBC+HS256"],
authorization_endpoint: "https://iam.cloud.infn.it/authorize",
device_authorization_endpoint: "https://iam.cloud.infn.it/devicecode",
claims_supported: [
"sub", "name", "preferred_username", "given_name", "family_name",
"middle_name", "nickname", "profile", "picture", "zoneinfo", "locale",
"updated_at", "email", "email_verified", "organisation_name", "groups"],
op_policy_uri: "https://iam.cloud.infn.it/about",
token_endpoint_auth_methods_supported: [
"client_secret_basic", "client_secret_post", "client_secret_jwt", "private_key_jwt", "none"],
token_endpoint: "https://iam.cloud.infn.it/token",
response_types_supported: ["code", "token"],
grant_types_supported: ["authorization_code", "implicit", "refresh_token", "client_credentials",
"password", "urn:ietf:params:oauth:grant-type:token-exchange", "urn:ietf:params:oauth:grant-type:device_code"],
revocation_endpoint: "https://iam.cloud.infn.it/revoke",
userinfo_endpoint: "https://iam.cloud.infn.it/userinfo",
op_tos_uri: "https://iam.cloud.infn.it/about",
token_endpoint_auth_signing_alg_values_supported: ["HS256", "HS384", .. , "PS512"],
require_request_uri_registration: false,
code_challenge_methods_supported: ["plain", "S256"],
id_token_encryption_alg_values_supported: ["RSA-OAEP-512", "RSA-OAEP", .. , "RSA-OAEP-384"],
jwks_uri: "https://iam.cloud.infn.it/jwk",
subject_types_supported: ["public", "pairwise"],
id_token_signing_alg_values_supported: ["HS256", "HS384", .. , "none"],
registration_endpoint: "https://iam.cloud.infn.it/iam/api/client-registration",

48

OIDC userinfo endpoint

The Userlnfo endpoint is an OAuth 2.0 protected resource where client
applications can retrieve a JSON object that contains claims about the logged in
end-user. The sub member represents the subject (end-user) identifier.

The content of this JSON object can overlap with the content of an ID token.

Clients must present a valid access token to retrieve the claims.

The Userlnfo endpoint is {
. . "sub" : "83692",
described in the OpenlD Connect "name" t "Alice Adams',
"g1vgn_name"" E :Al1cez,
Core 1.0 specification. e ixampLe. con'

"picture" : "https://example.com/83692/photo.jpg"

49

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

JSON Web Tokens (JWT)

JSON Web Tokens (JWTs)

JSON Web Token is a compact, self-contained way of securely transmitting information
between parties in a JSON object

A JWT is represented as a sequence of URL-safe parts separated by period (“.”)
characters. Each part contains a base64url-encoded value.

The number of parts in the JWT is dependent upon the representation of the resulting
JSON Web Signature (JWS) using the JWS Compact Serialization or JSON Web
Encryption (JWE) using the JWE Compact Serialization

o Typically: header, payload, and signature

The payload of the JWT is encoded in token claims

JWTs are typically signed and, if confidentiality is a requirement, can be encrypted
Main specification: REC 7519

51

https://www.rfc-editor.org/rfc/rfc7519

JWT: Header.Payload.Signature

Example of encoded token

eyJraWQIiOiJyc2ExliwiYWxnljoiUIMyNTYifQ.eyJ3bGNnLnZIcil6ljEuMCIsInN1Yil61jBmZD
C2YjNJLWMzZJEtNDI4AMCT1IZTNLTVIYmVhZDgxYzZkNilsImF1ZCl6ImhOdHBzOIlwvXC93
bGNnLmNIcm4uY2hcL2p3dFwvdjFcL2FueSIsimSiZiloMTY20TEyNzI3Nywic2NvcGUIOiJ
zdGOyYWdILnJIYWQ6XCS8iLCJpc3MiOidJodHRwczpcL1wvd2xjZy5jbG91ZC5jbmFmLmlu
Zm4uaXRcLylsiImV4cCI6MTY20TEzMDg3NywiaWFOIljoxNjY5SMTI3Mjc3LCJqdGkiQil5Z
DEONGRhMC1hMTQSLTQWZTIYWM3NS01MjMOYzFjOTcyODIIiLCJjbGlIbnRfaWQIiOiJl
YIIMWNjMiTmNWUXLTRhNGItYjK2Ny1iY2NIYTI2ZNmYwOWIifQ.YbsCossZBloBxJBgk9D
-IdVuAzm67rl_MVVdp8j4bXicLgPCM-6Wdze2VMzR6NwWOKMCBXhs59e5glgqOFrSkagrp
Pjuua2sHX5ul84SNvigoKMwSn_NIDXSO9flaDIluelrSgT1qgOTSIMV5M _U4VpWjOimpYm
OfxmLSSIZTS9MU

52

JWT: Header.Payload.Signature

Example of decoded token

Header

$ echo $AT | cut -d. -f1 |
base64 -d 2>/dev/null | jq

{

}

"kid":
" alg" .

"rsal" ,
"RS256"

Payload

$ echo $AT | cut -d. -f2 | base64 -d
2>/dev/null | jq

{
"wlcg.ver": "1.0",
"sub":
"0£d76b3c-c3£f1-4280-be3c-5ebead81lc6d6",
"aud": "https://wlcg.cern.ch/jwt/v1l/any",
"nbf": 1669127273,
"scope": "storage.read:/",
"iss": "https://wlcg.cloud.cnaf.infn.it/",
"exp": 1669130873,
"iat": 1669127273,
"Jtiv:
"2222be79-e218-442b-9389-c741c5b95da2",
"client id":
"eb9%elcc2-f5el-4a4b-b967-bccea266£09b"

Signature

$ echo $AT | cut -d. -£3

Zcamp7C40T40ygiO9 uaboASnE
TYvkZhr8x OredqlLQagryptTwl
iDJRcCA2L8Uff Tyh8KxKJscle
k86pGEZnkckFcfKscNJQyg8gKt
4plTDpxUKMVOficF--IFOK3ACl
ul8kWSGlpc85IG1l8r64gF5e460
fHjblGDnQAz06bc

53

JWT utilities

Debugger

Encoded

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.ey
JzdWIiO0iIxXxMjMONTY30DkwIiwibmFtZSI6Ikpva
G4gRG91IiwiaWFOIjoxNTE2MjM5MDIyfQ.ST1Kx

WRJSMeKKF2QT4fwpMeJf36P0Ok6yJV_adQssw5c

https://jwt.io/

Libraries Introduction Ask

Decoded
HEADER:
{
"alg": "HS256",
typ® s RIWT™
}
PAYLOAD:
&

"sub": "1234567890",

e"'s. " Jel D "
"iat": 1516239022

VERIFY SIGNATURE

Crafted by PN AuthO

N/ by Okta

JWT

JWT CLAIMS

ISSUED BY : s~
ISSUED AT: amman~
EXPIRATION : Ammrr~
USER ID : A~

EMAIL e

Useful JWT decoders

° https://jwt.io/
e https://github.com/troyharvey/jwt-cli

54

https://jwt.io/
https://jwt.io/
https://github.com/troyharvey/jwt-cli

JWT claim names

Typical registered claim names (i.e. a set of basic claims defined by the JWT standard)

“iss” (Issuer): the principal (Authorization Server/OpenlD Provider) that issued the JWT (e.g., iam.cloud.infn.it)
“sub” (Subject): the principal that is the subject of the JWT (e.g., a unique ID linked to an IAM account)

“aud” (Audience): identifies the recipients that the JWT is intended for (e.g., hostname of a RUCIO instance)
‘exp” (Expiration time): identifies the expiration time after which the JWT MUST NOT be accepted by resources
“‘nbf’ (Not before): identifies the time before which the JWT MUST NOT be accepted by resources

“iat” (Issued at): identifies the time at which the JWT was issued

“jti” (JWT ID): provides a unique identifier for the JWT

Additional INDIGO IAM claims (SPOILER)

e “client_id”: ID of the client which requests the token
e ‘“scope’: list of token capabilities
e “groups’”: list of groups the user is member of

55

OAuth2 token validation

The Resource Server validates the access Authorization Server
token: l
. . . o* The call to the introspection
e through offline validation secormy TR endpoint

, , TOKEN SERVICE
o no credentials needed — no need to register

the Resource Server on the Authorization
Server Is this client allowed to do that?

o token is parsed and the signature is verified
with the public key exposed by the AuthZ

Resource Server

Server
e sending the token to the introspection endpoint ﬁ?k l
o means the Resource Server is registered on the AuthZ Server and provide API
its credentials in order to do this ﬁ%
o the answer is valid: true/false Q% API

API
56

JWT offline validation Section 4 of REC 9068

The Offline Validation of a JWT means:
e check that the current time is before the time represented by the “exp” claim
o delays of few minutes are allowed to account for clock skew
e the authorization server issuer identifier MUST exactly match the value of the "iss" claim
e the signature MUST be checked using the algorithm specified in the JWT "alg" Header
Parameter
o the well-known endpoint of the AuthZ Server shares its public/symmetric key through
the jwks_uri field
e if validation is performed by the Resource Server, the “aud” claim must contain a resource

indicator value corresponding to the Resource Server itself

57

https://www.rfc-editor.org/rfc/rfc9068#section-4

Examples of scopes

Standard commonly used OAuth/OIDC scopes

e openid signal that the Client wants to receive authentication information
about the user — the ID Token

e profile used to request profile information (name, address, efc)
e email used to request access to the user’s email

e offline_access used to request refresh tokens

58

Proof Key for Code Exchange (PKCE)
and Authorization Code Flow

The Authorization Code Flow

e The Authorization Code flow supports both OAuth and OIDC scenarios

o The openid scope augments the OAuth Authorization Code flow with OIDC features

e The client application is known as a confidential client

o Confidential clients run in a restricted environment (e.g., a server environment)

o Confidential clients have access to a secret, allowing them to authenticate to the AS
e The authorization code is protected against abuse

o A confidential client needs to authenticate to exchange an authorization code

o Authorization codes should be short-lived and should only be valid for one-time use

60

An Authorization Code INJECTION ATTACK

The Authorization Code
flow relies on the
insecure front channel
to relay the code and
this could have
consequences —

Proof Key for Code
Exchange (PKCE)
helps protect the
integrity of the
Authorization Code
flow

USER

© initialize the flow

N

N

e Redirect with authorization code

SECURITY
TOKEN
SERVICE

A server-to-server request to 0 o Relevant tokens associated
exchange the authorization code with the victim user

€ initialize the flow with the STS

@ Associate tokens with
the attacker's account

Send request to

>

o Follow redirect with authorization code

© the callback with

the stolen code @

BACKEND

>\ ATTACKER
o Steal the authorization code

3 tha
‘ Resource g‘r'gv?:r'; M oﬁ AuthZ Server ap Resource Server

Request that triggers o
thgustart of the{gﬂ%W Initialize the flow with
the AuthZ Server by The goa| Of PKCE

redirecting the browser

Request to the Authz ,__ ey - Noactiveses jg {0 ensure that the

server to start the flow who are you? .
authenticz Client that

Good! Redirec¢ eXChangeS the COde

to the applicati | :

send the autho In Step 8 IS the

Follow the redirect to code same client that
th lication/client ’_e_’ Request the AuthZ P g . .
o PP o e Server to exchangs the initializes the flow in

| am Enrico with e
password Gengarl17!

callback endpoint Validates |
received authorization authorization ci Step 2
code returns the ai
<«—)— token and/or iaroken-
API request with the @
access token Validates the token +
” API response

Authorization Code Grant
(Recommended for Most Apps)
62

‘ Resource Owner
(Browser)

Request that triggers
the start of the flow

Request to the AuthZ

server to start the flow

| am Enrico with
password Gengarl17!

—0-

{3
T cion [RNET

Generate a random value
(code verifier) and
associate it with the

user’s session (e.g. keep

in a cookie)

Calculate the SHA256
hash of the code verifier
(code challenge)

Initialize the flow and
include the code
challenge

No active sessions,

who are you? please

authenticate

> Store the code

challenge along with the
authorization code

Redirect back to the
application and send

the authorization
6 code

Authorization Code Grant with PKCE

s

API

Resource Server

63

2 <3
& veovegny KENEEET P s
(Browser)

Follow the redirect to
the application/client ’_e_’ Request the AuthZ

callback endpoint Server to exchange the
received authorization
code and include the Calculate the SHA256
code verifier hash of the code verifier
and compare to the
stored code challenge

Validates the
authorization code and
returns the access

<—g—- token and/or id token

API request with the @
access token

s

API

Authorization Code Grant with PKCE

Resource Server

Validates the token +
API response

64

& o
& Resourceowner LU mmm——y LEy uzsener S Resource Servr

Request to the AuthZ)
server to start the flow

2 3 The authorization request (a redirect to the AuthZ Server)

https://iam.cloud.infn.it/authorize
?response_type=code
&scope=openid profile email
&client_id=901C887F-EB2E-4957
&redirect_uri=https://lwebapp.com/callback
&code_challenge=F455...A353DC — the code challenge (hash of code verifier)
&code_challenge_ method=S256 — the hash function

Authorization Code Grant

(Recommended for Most Apps)
65

POST https://iam.cloud.infn.it/oauth/token

grant_type=authorization_code
&client_id=901C887F-EB2E-4957
&client_secret=60DRv0g...0VOSWI
&redirect_uri=https://webapp.com/callback
&code=ySVyktqNkeEKJyylj0K...

&code verifier=DOHpp1yiKOIEIVij...K8HBZB — the code verifier from step 2

\ 4
'—e—> Request the AuthZ
Server to exchange the
received authorization
code
<—@—~
._Q

Authorization Code Grant
(Recommended for Most Apps)

66

Proof Key for Code Exchange (PKCE)

e PKCE consists of a code verifier and a code challenge
o The code verifier is a cryptographically secure random string
m Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] -. _~
o The code challenge is a base64 urlencoded SHA256 hash of the code verifier
m The hash function uniquely connects the code challenge to the code verifier

m The code verifier cannot be derived from the code challenge
e PKCE ensures that the same client intializes and finalizes the flow
o PKCE was originally intended to secure flows of public clients (no client authentication)

o Today, PKCE is a recommended best practice to guarantee flow integrity

e PKCE replaces the OAuth state parameter or OIDC nonce for security

67

Token based Authorization

Token-based Authorization

We understood that:

e to access resources/services — a Client application needs an Access Token

e to identify a user — a Client applications needs an ID Token

e the tokens are obtained from an Authorization Server|OIDC Provider using standard
OAuth|OIDC flows

Authorization is performed at the Resource Server level, leveraging info extracted from
the token:

o Identity attributes: e.g., groups included into ID token (and optionally also into
access token — it can contain whatever the provider wants)

e Scopes: capabilities linked to access tokens at token creation time (each provider
can define its own scopes)

69

|dentity-based vs Scope-based Authorization

Identity-based authorization token claims ,
local policy
e the ID token brings information about attribute Rl = o E'E]
entitlement (e.g., group/role membership) s ®
e the service maps these attributes to a local l
authorization policy
hz
Scope-based authorization dae:itsion

e the access token brings information about which

actions should be authorized at a service token claims

e the service needs to understand these
capabilities and honor them e e

e the authorization policy is managed at the VO PEcRef: storags read:istorade meditys/nterar
level (i.e., IAM)

N

authZ
decision

70

|dentity-based vs Scope-based Authorization

Condividi "20181011-OIDC-WP.pdf"

©)

@

The two models can coexist, even in

Aggiungi persone, gruppi ed eventi di calendario

the context of the same application

Persone con accesso
identity based AuthZ — mevrclTSs6@gmaicom

Q federica.agostini89@gmail.com
federica.agostini89@gmail.com

@ robmic.RM@gmail.com
@ robmic.RM@gmail.com
Accesso generale

Chiunque abbia il link ~

Visualizzatore

Visualizzatore

sco pe based Authz N O Qualunque utente di Internet con il link pud Visualizzatore

visualizzare |'elemento

@ | visualizzatori di questo file possono vedere commenti e
suggerimenti

v

v

v

(e copialink)

71

Long-Term access with Refresh Tokens

Refresh Token flow

RFC-6749 Section 1.5

The application acts on behalf of a user and get a new access token without any user
interaction — e.g. to refresh an Access Token that is about to expire

It starts with an authenticated POST to the Authorization Server token endpoint

o Client must authenticate
o Avalid Refresh Token must be provided
o A new Access Token and possibly an updated Refresh Token are returned

A Refresh Token request can be performed in order to change the audience claim in
place of using the token exchange flow (we’ll see it later)

The flow authorization grant is a refresh token, obtained after an authorization flow
(e.g. code, see next slide)

73

https://www.rfc-editor.org/rfc/rfc6749#section-1.5

& o
m Resource g:"‘)’;‘s‘:r'; M 4% AuthZ Server apl Resource Server

Request to the AuthZ)
server to start the flow

2 3 The authorization request (a redirect to the AuthZ Server) if we want a refresh token too

https://iam.cloud.infn.it/authorize
?response_type=code
&scope=openid profile email offline_access — ask for a refresh token too
&client_id=901C887F-EB2E-4957
&redirect_uri=https://lwebapp.com/callback
&code_challenge=F455...A353DC
&code_challenge_method=S256

Authorization Code Grant
(Recommended for Most Apps)
74

& o
’i Resource gm:::; M 4% AuthZ Server ap Resource Server

9 The response from the OpenlID Provider

{
“id_token”: “eyJhbGci0iJIUzI..WiSA68dGRo”,

“access_token”: “eyJhbGciOiJIUzI..zMN1O_QntNo”,

“refresh_token”:
“eyJhbGci0iIIUZIINiISINR5cCI6IKkpXVCI9.eyIzdWIi0i1IzZjUINGQyZ..ZDc1Yjg2NWIifQ. VNptQ-X-0TS8_
TN3sOVMcrhEYuhRkOIjzMN1O_QntNo”

}

—Q— Validates the

authorization code
and returns the
accessl|id tokens and
the refresh token

—©® .

Authorization Code Grant
(Recommended for Most Apps)
75

Refresh Token concepts

e The refresh token lifetime is totally decoupled from the lifetime of the
authenticated user session within which the grant was performed

e Even if the expiration time associated with a refresh token is known, the client

cannot assume it’s always valid
o auser could revoke consent
o the resource server might change its local policy (e.g. accepting only access tokens obtained
via multi-factor authentication from a certain moment on)
o client code must have an appropriate error management logic

e Refresh Tokens are Client specific

o i.e., arefresh token issued to Client A cannot be used by Client B
o instead, this use case is supported by the token exchange flow

76

2 oﬁ ot

One option is to use the expires_in ﬁ a
parameter in the token Lm $¥ AuthZ Server apl Resource Server
response to figure out when the
access token expires.
Another option is to monitor error
responses from the API API request with the . .
when an expired token is rejected. Sccess token Reject the expired
I « e access token
. . . Request new access
1. The client application token with the refresh
decides when to use a token and client ’_“_’
refresh token to get new thenticafl Retums the new access
lUnEtmdeE e token (and eventually a

access tokens

g new refresh token)

API request with the
new access token Validate the token and
return APl response

FanY
&

Refresh Token Flow

77

% s o
Lm ol AuthZ Server apl Resource Server

API request with the
access token

" Reject the expired
B @ access token

Request new access

token with the refresh
token and client n Returns the new access

authentication token (and eventually a

g new refresh token)

1 The token authenticated request using client credential flow

POST https://iam.cloud.infn.it/oauth/token

grant_type=refresh_token - indicates the refresh token flow
&refresh_token=eyJhbGciO...J9.eyJzdWEYuntNo
&scopes=api.read — this MUST be a subset of the original request
&audience=https://webapp.org/

Refresh Token Flow

78

Refresh Token Lifetimes

e The exact refresh token lifetime is at the discretion of the provider

o Refresh token lifetimes in real-world scenarios can be hours, months, or eternity
o The provider can change its lifetime policy at will, or make it dependent on the type of client

e Refresh tokens can also be revoked

o Clients can revoke refresh tokens when they no longer need them
o Users can often revoke refresh tokens to revoke a client's authority to act on their behalf

e \When a refresh token is no longer valid — re-authentication is necessary

o The only way for the client to regain access is by running a new Authorization Code flow
o This often includes explicitly requesting user involvement

79

Handling Refresh Tokens at the client

e The refresh token should be considered as sensitive as user credentials
o Using the refresh token requires client authentication

e A minimum security requirement is guaranteeing confidential storage
o This approach fails if an attacker gains access to the encrypted data and the keys

80

The Client Credentials Flow

The OAuth 2.0 Client Credentials Flow

The client is accessing the API directly, on its own behalf
o Client authentication is required (i.e. client credential flow is not enabled for public clients)

This is an OAuth 2.0-only flow, not an OpenID Connect flow — no user involved
o No additional authorization request is needed (i.e. no authorize endpoint is involved into this flow)
o The authorization grant does not require intervention of a user (i.e. no login requested)
o The consent page is not shown — user does not have to authorize the Client app to access its data

The access token issued by the AuthZ Server represents the client's authority
o the sub claim is the client unique identifier

The Client Credentials flow only works with confidential clients
o Confidential clients need to run in a secure environment (server-side systems)

A Refresh Token should not be issued in a client credential request

RFC-6749 # Section 4.4

82

https://www.rfc-editor.org/rfc/rfc6749#section-4.4

% s o
Lm ol AuthZ Server apl Resource Server

KOSl Authenticate the client

Server to get an and returns the access
access_token -—"—»
- token representing the

authority to access the
API

API request with the e .
access token Validates the token +

- e API response

1 The token authenticated request using client credential flow

POST https://iam.cloud.infn.it/oauth/token

grant_type=client_credential — indicates the client credentials flow
&client_id=901C887F-EB2E-4957
&client_secret=60DRv0g...0VOSWI

Client Credentials Grant

83

s : o
m ol AuthZ Server arl Resource Server

Request the AuthZ . .
Server to get an Authenticate the client

ey o and returns the access
access_foken token representing the
authority to access the

API

API request with the e ¥
access token

Validates the token +

- e API response

“access_token”: “eyJhbGciOiJIUzI..zMN1O_QntNo”, --> ¢ sy e e elsane G

“token_type”: “Bearer”, "sub": "901C887F-EB2E-4957",
13 . .99, ""scope": "api.read",
éxpires_in™: 3600’ "iss": "https://iam.infn.it/",
} nexp": 1669832797,

"jat": 1669829197,
"jti": "57a2e594-f212-4183"

Client Credentials Grant

84

The Device Code Flow

‘ Resource Owner
(Browser)

3 o
i RS
Initialize flow by calling

the /devicecode
endpoint

Show URL and user
code and start polling

the result using the E
device code , No active sessions, who

Return URL and user
o code and a device

code

Open URL in browser e

<

| am Enrico with

are you? please
e ° authenticate

password Gengarl7! e @

Allow the client app
access?

Insert user code and _ 6

authorize access

> Flow Completed
Response with the

access token and/or id
‘—9—‘ token and/or refresh

Authenticate user with
the id token

AuthZ Server

s

APl Resource Server

Validates the token +

token
API request with the @
access token

Device Code Flow

” API response

86

2 $3
& veovegny KENEEETE P s
(Browser)

Initialize flow by calling
the /devicecode Return URL and user
endpoint o code and a device

Show URL and user SELE

code and start polling

{ "user code": " ZGNRL",

"device code": "8aee8fd6-4f64-4630-99eb-7917ca355£21",

"verification_uri_complete":
"https://iam. cloud.infn. it/device?user code\u003d ZGNRL",
"verification uri":"https://iam. cloud.infn.it/device",
| "expires in":600

p

Authenticate user with 3:0:33 tol((j;an anfd/orrid
the id token <_@_. oken and/or refres
token

API request with the ._®

access token

s

API

Device Code Flow

Resource Server

Validates the token +
API response

87

Device code flow

REC 8628

Used in place of the authorization code flow when the Client can not easily
trigger a browser-based authorization

o the authorization to access protected resources happens on a separate device

Requirements for the device code flow:

o the device is able to display or otherwise communicate an URI and code sequence to the user
o the user has a secondary device (e.g., personal computer or smartphone) from which they can
process the request

Clients that use Device flow won’t receive incoming requests that notify them about
the given grant, so Clients must poll the authorization server repeatedly until user
completes the approval process

88

https://www.rfc-editor.org/rfc/rfc8628

Device code flow

e The authorization grant is a code

o The code has to be requested at the device code endpoint exposed by the AS
o The device code endpoint can be retrieved from the well-known endpoint
o The code is used to obtain an Access Token

e Device code flow supports both public and confidential clients

e No back-channel interaction between the Client and the Authorization Server

Registering Client

Generating account configuration ... Enter Code
accepted - <
Using a browser on any device, visit: i:,ﬁ

https://wlcg.cloud.cnaf.infn.it/device

And enter the code: REUVEO
Alternatively you can use the following QR code to visit the above listed URL.

89

The Token Exchange flow

Token exchange

B
e RFC 8693 L
e This flow has been designed to satisfy the needs ?

to access resources hosted by other downstream
services on behalf of the user

o This flow allows Resource Server A to l acts on ¢
request the exchange of AT1 with AT2 (and m be:a'f —>
potentially a RT2 to renew such AT2) and user

make calls to a backend service C on behalf
of the requesting user B

delegates

o the Resource Server A is an OAuth 2 Client
of the AS

e The exchanged token and the new token should be requested by two different Clients

91

https://www.rfc-editor.org/rfc/rfc8693

& o 3
Resource Ouner [ASFC [T ™t Authz server Res. Server A

User wants to access the
API exposes by
Resource Server B using
an access token

obtained with ._0_.8 Request Resource

o . erver A to access the
Authorization Code flow API of Resource Server

Sends request to the

B providing the access g

AuthZ Server to
exchange the received
access token for a new

Validates client <—9—' scoped token

credentials and grants a
new access token that
allows the registered
Resource Server A

to access Resource
ServerB)+ Receives the access

Resource Server B

el eliel UEEs (0 ’—e—’ Validates the token

request user information
from Resource Server B

and returns the user data

Token exchange concepts

e The new access token:
o is more narrowly scoped for the Resource Server B
o has an audience different from the original token (from Resource Server A to Resource Server B)

e Terminology:
o subject token represents the subject access token that the Client wants to exchange
m The act of performing a token exchange has no impact on the validity of the subject token

e Two main scenarios:
o impersonation vs delegation

o but “delegation and impersonation are not inclusive of all situations. When a principal is acting directly
on its own behalf, for example, neither delegation nor impersonation are in play. They are, however, the
more common semantics operating for token exchange and, as such, are given more direct treatment in
this specification.” from RFC

93

From REC 8693

Impersonation vs. delegation

"aud" :"urn:example:cooperation-context",
"iss":"https://as.example.com",

Resource Server A impersonates Resource Owner: "exp” -1441913610,
"sub" :"bdc@example. ngt AT]
e Ahas all the rights (determined by the scopes) of Resource Owner y Seope aEdars Rrafids DEstory

e Ais indistinguishable from B
e The process allows a subject to change to a different subject
o Resource Server B cannot determine by looking at the token the identity of the Resource Server A

Resource Owner delegates Resource Server A

e Resource Server A still has its own identity, which is separated from the Resource Owner one
e The optional actor_token used within the Token Exchange request represents Resource Server A
e When Resource Server A interacts within Resource Server B, it is explicit that it's representing the Resource Owner
e The Resource Owner can decide to only delegate certain rights
to Resource Server A 7
L The token act claim in the Token Exchange response is a JSON object "aud”:"urn:example:cooperation-context",
which identifies the acting party to whom authority has been delegated. e e
It provides a representation of a delegation chain "scope” :"status feed",
o n?e_mt))ers in the JSON object are claims that identify the actor (e.g. the sub sy, serBaxsplacnetT,
claim
o a chain of delegation can be expressed by nesting one act claim within { “sub” :"admin@example.net"
another: the last recent actor is the most deeply nested }

}

94

https://www.rfc-editor.org/rfc/rfc8693#section-appendix.a

Token exchange: use case

Example: moving some of my files with RUCIO +

FTS From WLCG CE Hackathon
e | give RUCIO permission to act on my behalf — Rucio rucio.example sel.example
registered client has token exchange grant type < g
In this scenario, *RUCIO Fl

enabled
RUCIO delegates its identity to

FTS to manage a third-party data

° RUCIO then delegates the file transfer task to FTS, which
transfer between SE 1 and SE 2

still acts on my behalf to trigger third-party transfers
across Storage Elements

o Both RUCIO and FTS clients act on my behalf

e Different scopes are needed at different level of the
1AM SE 2
infrastructure OFTS

iam.example fts.example se2.example

e Token exchange allows to provide tokens with
minimum privileges to each service without requiring
that big fat tokens are used at the top of the chain

95

https://indico.cern.ch/event/1032742/

The token exchange flow |
From section 2.3 of REC 8693

B
o
e User B wants to access the resource C. ? B

e Since resource A is an OAuth Client of the AS enabled for
token exchanges, B requests access to A using a bearer delegates
token issued by AS.

A C
acts on

. behalf Other
?7 —>
Client B am e Resource Yesolifce
user

frontend.example.com backend.example.com

GET /resource HTTP/1.1

Host: frontend.example.com
Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDgceLTC

{

"aud": "https://frontend.example.com",
"iss": "https://as.example.com",

"exp": 1441917593,

"iat": 1441917520,

"sub": "user-b-id",

"scope": "resource-a-scope”

The bearer token is used by
Client as grant

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

B
o
e Then Resource A requests for a token exchange properly ?
scoped for Resource C
delegates
HTTP basic authentication to AS using the —
credentials of the OAuth Client/Resource A en

POST /as/token.oauth2 HTTP/1.1

Authorization: Basic cnMwODpsb25nLXN1Y3VyZS1lyYW5kb20tc2VijcmVO
Content-Type: application/x-www-form-urlencoded

grant_type=urn%3Aietf%3Aparams%3Acauth%3Agrant-type%3Atoken-exchange
&resource=https%3A%2F%2Fbackend.example.com%$2Fapi
&subject_token=accVkjcJyb4BWCxGsndESCIQbdFMogUC5PbRDgceLTC
&subject_token_ type=
urn%3Aietf%3Aparams%3Acauth%3Atoken-type%3Aaccess_token

acts on
behalf
of
user

From section 2.3 of RFC 8693

a4 Resource ? —> Other
resource

frontend.example.com backend.example.com

resource parameter indicates
the location of the backend
service (similar to audience)

The bearer token becomes the
subject token

97

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

From section 2.3 of RFC 8693

8
e The AS validates both the Resource A client credentials and
the subject token, and issues a new access token to
Resource A (impersonation)
delegates
HTTP/1.1 200 OK i A C
Content-Type: application/json acts on
Cache-Control: no-cache, no-store behalf __ Resolirce 2 —» LT
of resource
{ user

frontend.example.com backend.example.com
"access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6Ijll

ciJ9.eyJhdWQiO. .0iY¥YXBpIn0.40y3ZgQedw6rxf59W1lwHDD9jryFOr0_Wh3CGozQBihNBhnXEQQU85AI9x3KmsPot tVMLPIWvmDCM
y5-kdXjwhw",

"issued token_type": "urn:ietf:params:oauth:token-type:access_token",

"token_type":"Bearer",

"expires_in": 3600

} {

"aud": "https://backend.example.com”,

"iss": "https:/las.example.com”, The access token is of Bearer type
"exp": 1441917593, It's opaque to the Client — it only has to
"iat": 1441917533, be sent in another HTTP request

"sub": "resource-a-id",
"scope": "resource-c-scope"

98

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

From section 2.3 of RFC 8693

8
e The AS validates both the Resource A client credentials and
the subject token, and issues a new access token to
Resource A (delegation)
delegates
HTTP/1.1 200 OK i A C
Content-Type: application/json acts on
Cache-Control: no-cache, no-store behalf __ Resolirce 2 —» LT
of resource
{ user

frontend.example.com backend.example.com
"access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6Ijll

ciJ9.eyJhdWQiO. .0iY¥XBpIn0.40y3Z2gQedw6rxf59WlwHDDOjryFOr0 Wh3CGozQBihNBhnXEQQU85AI9x3KmsPottVMLPIWvmMDCM
y5-kdXjwhw",
"issued token_type": "t

"aud": "https://backend.example.com",
"token_type":"Bearer",

"iss": "https://as.example.com”,

"expires in": 3600 "exp": 1441917593,
} "iat": 1441917533,
“sub”: "user-b-id" The access token is of Bearer type
“act”: { It's opaque to the Client — it only has to

"sub": "resource-a-id", be sent in another HTTP request

}

cope": "resource-c-scope"

99

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow |
From section 2.3 of REC 8693

Token to access the Resource C using HTTP bearer
authentication

8
e Now Resource A can finally use the newly acquired Access ? a

delegates

A C
acts on

. behalf Other
?7 —>
Client B ama Resource Yesalirce
user

frontend.example.com backend.example.com

GET /api HTTP/1.1
Host: backend.example.com
Authorization: Bearer eyJhbGciOiJFUzIINiIsImtpZCI6IjllciJd9.eyJhdWQ

i0iJodHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCIpc3MiOiJodHRwczovL2
FzLmV4YW1lwbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCIJpYXQiOjEONDESMTc1M
ZMsInN1YiI6ImJkYOBleGFtcGx1lLmNvbSIsInNjb3B1lIjoiY¥XBpIn0.40y3ZgQe
dw6rxf59W1lwHDDIjryFOr0_Wh3CGozQBihNBhnXEQQU85AI9x3KmsPottVMLPIW
vmDCMy5-kdXjwhw

100

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

Choosing the Right Grant Type

To select the best grant type, consider these factors:

Client Type — Confidential clients (backend apps) vs. public clients (mobile, SPA).

Security Needs — Use PKCE for public clients and client credentials for
machine-to-machine authentication.

User Experience — Use device code flow for limited-input devices and
authorization code flow for web apps.

Use Case Mapping — Web apps favor authorization code, while backend services
use client credentials.

101

Dynamic Client Registration

OAuth Client registration

Clients which interact with an Authorization Server need to be registered

When a client is registered, it is assigned a unique identifier (client_id) and a
credential, either

o a password (client_secret), or
o an assertion (in the form of a JWT)

Credentials are required in most of the OAuth/OIDC flows or to access
%;I)ecific endpoints, where different privileges may be assigned to different
ients

Client registration is necessary to integrate any application that needs to
“drive” an authorization flow

o e.q., if your web app needs to authenticate users through a “Login” button, you
need to register a Client

103

OAuth Client Types

RFC-6749 # section-2.1

confidential: clients capable of maintaining the confidentiality of their credentials
(e.g., client implemented on a secure server with restricted access to the client
credentials)

public: like mobile apps or single-page applications (Single Page Applications),
are incapable to keep a client secret, to keep the confidentiality of their credentials

104

https://tools.ietf.org/html/rfc6749#section-2.1

Handling client credentials

Client credentials MUST be maintained confidential

e not stored in Docker images or source code

o don’t commit them on your git repo!
o use ENV variables or other secret management mechanisms to pass down these secrets to
your application

Follow recommendations in the client app security section of the OAuth security
recommendations:

https://tools.ietf.ora/html/rfc6819#section-5.3

105

https://tools.ietf.org/html/rfc6819#section-5.3

Client registration on OIDC

e through the registration endpoint exposed by the well-known endpoint

o i.e.registration_endpoint:
"https://iam-dev.cloud.cnaf.infn.it/iam/api/client-registration"

e the dynamic registration can be anonymous or not

o the OIDC provider can restrict the access to this endpoint
o a registration access token is returned and the owner of this token can manage the client

o these are the dynamic clients

106

Example of client registration via registration endpoint

Prepare a JSON file with the Client details, for instance

$ cat client req.json
{
"redirect uris": [
"https://myapp.org/callback"
1,
"client name": "client-demo",
"contacts": [
"enrico.vianello@cnaf.infn.it"
1,
"token_endpoint_auth method": "client secret basic",
"scope": "address phone openid email profile offline_access",
"grant_types": [
"refresh token",
"authorization_code"
1,
"response_types": [
"code"
1
}

107

Example of client registration response

$ curl https://iam-dev.cloud.cnaf.infn.it/iam/api/client-registration -H "Content-Type: application/json" -d @client_req.json 2>/dev/null
| Ja
{

"client id": "90b4£677-2551-4852-935e-8£785c583572",

"client_ secret": "xxx",
"client name": "client-demo",
"redirect uris": [

"htéis://myapp.org/callback“
]I
"contacts": [
"enrico.vianello@cnaf.infn.it"
]I
"grant_ types": [
"authorization_ code",
"refresh token"

] 4

"response_types": [
"code"
]I
"token_endpoint_auth method": "client_secret_basic",
"scope": "openid profile offline access email",

"reuse refresh token": true,
"dynamically registered": true,

"clear access_tokens_on_refresh": true,
"require auth time": false,
"registration access_token":

"eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjMONTY30..TE2MJM5MDIy£Q . Sf1KxwRJISMeKKF2QT4fwpMeJ£3 6POk6yJV_adstw5c” ,
"registration client uri": "https://iam-dev.cloud.cnaf.infn.it/iam/api/client-registration/90b4£677-2551-4852-935e-8£785c583572",
"created at": 1669116921824

}

108

towards OAuth 2.1

What's new in OAuth2.1

e OAuth 2.1 (draft)

o itis a draft with the aim of consolidating and simplifying the most commonly used features of
OAuth 2.0

e Some new features of OAuth 2.1

o PKCE (Proof Key for Code Exchange) is required for all OAuth Clients using the
authorization code flow

redirect URIs must be compared using exact string matching — no wildcards in the URI
the implicit grant is omitted from this specification

the resource owner password grant is omitted from this specification

using bearer tokens in the query string of URIs is forbidden

0O O O O

110

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07
https://www.rfc-editor.org/rfc/rfc7636

that’s all

Useful references

RFC

The OAuth 2.0 Authorization Framework (6749)
JWT (7519)

Bearer token usage (6750)

OAuth 2.0 Device Authorization Grant (8628)
Token exchange (8693)

Proof Key for Code Exchange (7636)

JWT for client authentication (7523)

OpenlD Connect 1.0

Draft

e The OAuth 2.1 Authorization Framework
e OpenlD Connect federation

Other
e OAuth 2.0 and OpenID Connect video (OktaDev)

112

https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc8628
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7523#section-2.2
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07
https://openid.net/specs/openid-connect-federation-1_0.html
https://www.youtube.com/watch?v=996OiexHze0

Device Code Flow
Client Credentials Flow
Refresh Flow

Token Exchange Flow

Part 2: Hands-on

Now it's your turn to make practice

Backup

Authorization code flow

e Section 4.1 of RFC 6749 (OAuth 2)

e Section 3.1 of the OpenID Connect spec

e It's the recommended flow for server-side applications that can maintain the
confidentiality of client credentials

o recommended also for any client when combined with PKCE

115

https://www.rfc-editor.org/rfc/rfc6749#section-4.1
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://www.rfc-editor.org/rfc/rfc7636

Authorization code flow

OAuth 2.0 and OpenID Connect video from OktaDev

OAuth 2.0 authorization code flow

yelp.com

Connect with Google

contacts.google.com

yelp.com/callback

Loading...

.

accounts.google.com

[Email

I Password

accounts.google.com

Allow Yelp to access your public
profile and contacts?

116

https://www.youtube.com/watch?v=996OiexHze0

