
Hands-on with
1st - 4th July 2025

Andrea Bocci
CERN - EP/CMD

last updated July 2nd, 2025

performance portability

1-4 July 2025 A. Bocci - Performance portability with alpaka 3 / 16

exercise

● rewrite using alpaka a simple image processing program
● load one or more images
● for each image

– display the image on the terminal

– resize it to 50% the original size

– convert it to greyscale

– make 3 coloured copies

– combine them into a larger image

– display the combined image on the terminal

– save the combined image as a JPEG file

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 4 / 16

exercise

● rewrite using alpaka a simple image processing program
● load one or more images
● for each image

– display the image on the terminal

– resize it to 50% the original size

– convert it to greyscale

– make 3 coloured copies

– combine them into a larger image

– display the combined image on the terminal

– save the combined image as a JPEG file

use Sean Barret’s stb image library

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/nothings/stb.git

1-4 July 2025 A. Bocci - Performance portability with alpaka 5 / 16

exercise

● rewrite using alpaka a simple image processing program
● load one or more images
● for each image

– display the image on the terminal

– resize it to 50% the original size

– convert it to greyscale

– make 3 coloured copies

– combine them into a larger image

– display the combined image on the terminal

– save the combined image as a JPEG file

use Hayaki Saito’s libsixel library

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/saitoha/libsixel

1-4 July 2025 A. Bocci - Performance portability with alpaka 6 / 16

exercise

● rewrite using alpaka a simple image processing program
● load one or more images
● for each image

– display the image on the terminal

– resize it to 50% the original size

– convert it to greyscale

– make 3 coloured copies

– combine them into a larger image

– display the combined image on the terminal

– save the combined image as a JPEG file

this is just C++
port it to GPUs using alpaka !

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 7 / 16

workflow

combine them into a larger imageload an image

resize it to 50% the original size

convert it to greyscale

make 3 coloured copies

… can run many of these workflows in parallel …

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 8 / 16

CPU-only code

● clone or update the repository with the sample code

git clone https://github.com/fwyzard/intro_to_alpaka.git -b bologna2025

● or

git pull

● download and build the required libraries, then build the test program

cd images

make -j$(nproc)

● make libsixel.so.1 available in current directory

ln -s libsixel/lib/libsixel.so.1.0.6 libsixel.so.1

● run the test program

./test

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/bologna2025/images/test.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 9 / 16

suggestions

● start processing one image at a time
● later you can think how to process multiple images in parallel using different queues

● modify the Image class to use an alpaka host buffer for data_
● wrap the Image data_ in an alpaka View when you need to copy it to or from the device

● introduce a DeviceImage class that uses an alpaka device buffer for data_
● pass data_ to the kernels as a pointer or an std::span

● write a kernel for each operation
● scaling
● making a greyscale
● tinting
● composing

– try to use alpaka::memcpy(queue, dst, src) to compose individual lines, like the original code uses memcpy(dst, src, size)

● do not copy images back and forth between the cpu and gpu
● perform a single copy at the beginning, a single copy at the end, and only one synchronisation

● use a single queue to process all operations for a given image
● later try to use multiple queues to tint and compose images in parallel, using event to synchronise them

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 10 / 16

suggestion: host object

● alpaka functions require a “device” object to operate
● e.g., to create a an alpaka View to some host memory you need an object representing the host
● the host object should be unique throughout the program, and should always be available

● suggestion:
● create a host object once as a global variable, so you don’t need to pass it around

● caveat:
● in a “real” application we try to avoid global variables
● wrap it inside a global accessor function

// global objects for the host and device platforms
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, 0u);

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 11 / 16

suggestion: host and device images

struct Image {
 ...

 auto view() {
 return alpaka::createView(host, data_, Vec1D{width_ * height_ * channels_});
 }

 auto span() {
 return std::span<unsigned char>(data_, width_ * height_ * channels_);
 }
};

struct ImageDevice {
 alpaka::Buf<Device, unsigned char, Dim1D, uint32_t> data_;
 int width_ = 0;
 int height_ = 0;
 int channels_ = 0;

 ImageDevice(Queue &queue, int width, int height, int channels)
 : data_{alpaka::allocAsyncBuf<unsigned char, uint32_t>(queue, Vec1D{width * height * channels})},
 width_{width}, height_{height}, channels_{channels}
 {}

 auto view() {
 return data_;
 }

 auto span() {
 return std::span<unsigned char>(data_.data(), width_ * height_ * channels_);
 }
};

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 12 / 16

suggestion: 2-dimensional loops

● we can run a single 2-dimensional loop:

● or split it into inner and outer loops:

// 2-dimensional srided loop
Vec2D size{height, width};
for (auto idx: alpaka::uniformElementsND(acc, size)) {
 int y = idx.y();
 int x = idx.x();
 ...
}

// outer strided loop along the Y direction
for (int y : alpaka::uniformElementsAlongY(acc, height)) {
 ...

 // inner strided loop along the X direction
 for (int x : alpaka::uniformElementsAlongX(acc, width)) {
 ...
 }
}

https://creativecommons.org/licenses/by-sa/4.0/

questions ?

a possible solution

1-4 July 2025 A. Bocci - Performance portability with alpaka 15 / 16

solution (definitely not optimised)

● clone a dedicated branch form the repository with the sample code

git clone https://github.com/fwyzard/intro_to_alpaka.git -b bologna2025_solution

● download and build the required libraries, then build the test program

cd intro_to_alpaka/images/alpaka

make -j$(nproc)

● run the test program

./test_cpu

./test_cuda

./test_tbb

./test_mt

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/bologna2025_solution/images/test.cc

Copyright CERN 2025

Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

