
Performance portability with
1st - 4th July 2025

Andrea Bocci
CERN - EP/CMD

last updated July 1st, 2025

1-4 July 2025 A. Bocci - Performance portability with alpaka 2 / 97

who am I

● Dr. Andrea Bocci <andrea.bocci@cern.ch>, @fwyzard on CERN Mattermost
● applied physicist working on the CMS experiment for over 20 years
● at CERN since 2010
● I’ve held various roles related to the High Level Trigger

– started out as the b-tagging HLT contact
– joined as (what today is called) HLT STORM convener
– deputy Trigger Coordinator and Trigger Coordinator
– HLT Upgrade convener, and editor for the DAQ and HLT Phase-2 TDR
– currently, “GPU Trigger Officer”

● for the last years, I’ve been working on GPUs and performance portability
– together with a few colleagues at CERN and Fermilab
– “Patatrack” pixel track and vertex reconstruction running on GPUs
– R&D projects on CUDA, Alpaka, SYCL and Intel oneAPI
– support for CUDA, HIP/ROCm, and Alpaka in CMSSW
– Patatrack Hackathons !

https://creativecommons.org/licenses/by-sa/4.0/
mailto:andrea.bocci@cern.ch
https://mattermost.web.cern.ch/cms-exp/messages/@fwyzard

performance portability

1-4 July 2025 A. Bocci - Performance portability with alpaka 4 / 97

what is portability ?

● what do we mean by software portability ?
● the possibility of running a software application or library on different platforms

– different hardware architectures, different operating systems

– e.g. Windows running on x86, OSX running on ARM, Linux running on RISC-V, etc.

● how do we achieve software portability ?
● write software using a standardised language

– C++, python, Java, etc.

● use standard features
– IEEE floating point numbers

● use standard or portable libraries
– C++ standard library, Boost, Eigen, etc.

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 5 / 97

portability: an example

● for example

should behave in the same way on all platforms that support a standard C++ compiler:

#include <cmath>

#include <cstdio>

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

int main() {

 print_sqrt(2.);

}

The square root of 2 is 1.41421

portability/00_hello_world.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/00_hello_world.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 6 / 97

what about GPUs ?

● writing a program that offloads some of the computations to a GPU is somewhat different
from writing a program that runs just on the CPU

● inside a single application we have …
● … different hardware architectures
● … different memory spaces
● … different way to call a function or launch a task
● … different optimal algorithms
● … different compilers
● … different programming languages

● sometimes it may help to think about a GPU like programming a remote machine
● compile for completely different targets
● launching a kernel is similar to running a complete program

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 7 / 97

portability: the same example

#include <cmath>

#include <cstdio>

#include <cuda_runtime.h>

__device__

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

__global__

void kernel() {

 print_sqrt(2.);

}

int main() {

 kernel<<<1, 1>>>();

 cudaDeviceSynchronize();

}

The square root of 2 is 1.41421

portability/01_hello_world.cu

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/01_hello_world.cu

1-4 July 2025 A. Bocci - Performance portability with alpaka 8 / 97

portability: side by side

#include <cmath>

#include <cstdio>

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

int main() {

 print_sqrt(2.);

}

The square root of 2 is 1.41421

#include <cmath>

#include <cstdio>

#include <cuda_runtime.h>

__device__

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

__global__

void kernel() {

 print_sqrt(2.);

}

int main() {

 kernel<<<1, 1>>>();

 cudaDeviceSynchronize();

}

The square root of 2 is 1.41421

● we could
● wrap the differences in a few macros or classes
● share the common parts

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 9 / 97

so… are we done ?

● not really
● trivially extending our example to an expensive computation would give horrible performance

● why ?
● a CPU will run a single-threaded program very efficiently
● a GPU will be heavily underutilised, using a single thread out of O(10k)

– use only a small fraction of its computing power and memory bandwidth

– loose any possibility of hiding memory latency, etc.

● and what about different GPU back-ends ?

● what we need is performance portability
● write code in a way that can run on multiple platforms
● leverage their potential
● and achieve (almost) native performance on all of them

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 10 / 97

performance portability ?

 okkos

std::par

HIP

https://creativecommons.org/licenses/by-sa/4.0/
https://xkcd.com/927

the alpaka performance portability library

1-4 July 2025 A. Bocci - Performance portability with alpaka 12 / 97

what is alpaka ?
● alpaka is a header-only C++20 abstraction library for heterogeneous software development

● it aims to provide performance portability through
the abstraction of the underlying levels of parallelism

● may expose the underlying details when necessary
● (almost) native performance on different hardware

● supports all platforms of interest for HEP
● x86 and ARM CPUs

– with serial and parallel execution
● stable support for NVIDIA and AMD GPUs

– with CUDA and ROCm backends
● experimental support for Intel GPUs and Altera FPGAs, based on SYCL and oneAPI

● developed at CASUS at HZDR, and at CERN
● open source project, easy to contribute to: https://github.com/alpaka-group/alpaka/

● it is production-ready today !
● the latest documentation is available at https://alpaka.readthedocs.io/en/latest/index.html

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/
https://www.casus.science/home/
https://www.hzdr.de/
https://home.cern/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://alpaka.readthedocs.io/en/latest/index.html

1-4 July 2025 A. Bocci - Performance portability with alpaka 13 / 97

why alpaka ?

● support all platforms of interest to CMS with near-native performance
● evaluated using as a benchmark the Patatrack pixeltrack-standalone demonstrator

● production ready in 2022-2023, with long term support and development plans

studies done at CERN and HEP-CCE

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/cms-patatrack/pixeltrack-standalone/

1-4 July 2025 A. Bocci - Performance portability with alpaka 14 / 97

alpaka is under active development

● alpaka 1.0.0 released on November 2023
● experimental support for Intel oneAPI, with SYCL Unified Shared Memory model
● support c++23 std::mdspan and Kokkos’ mdspan

● alpaka 1.1.0 released on January 2024 ← used in CMS 2024 software releases
● stable support for Intel oneAPI
● implement additional math functions and warp-level functions

● alpaka 1.2.0 released on October 2024 ← used in CMS 2025 software releases
● more complete support for Intel oneAPI
● introduce helpers for writing parallel kernels

● alpaka 1.3.0 released on June 2025
● bug fix release for long term support, stable branch with support for c++17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/releases/tag/1.0.0
https://www.intel.com/content/www/us/en/developer/articles/code-sample/dpcpp-usm-code-sample.html
https://en.cppreference.com/w/cpp/container/mdspan
https://github.com/kokkos/mdspan
https://github.com/alpaka-group/alpaka/releases/tag/1.1.0
https://github.com/alpaka-group/alpaka/releases/tag/1.2.0
https://github.com/alpaka-group/alpaka/releases/tag/1.3.0

1-4 July 2025 A. Bocci - Performance portability with alpaka 15 / 97

alpaka is under active development

● alpaka 2.0.0 released on June 2025
● move to c++20 and introduce Concepts
● make more device-side operations constexpr
● improve memory buffers and views, support for “constant buffers”
● improve support for Intel oneAPI and Altera FPGA

● under development:
● support grid-wide synchronisation
● support unified memory
● support CUDA graphs / HIP graphs / TBB flow graphs

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/releases/tag/2.0.0
https://github.com/alpaka-group/alpaka/pull/2402
https://github.com/alpaka-group/alpaka/pull/2403
https://github.com/alpaka-group/alpaka/pull/2307

1-4 July 2025 A. Bocci - Performance portability with alpaka 16 / 97

alpaka core concepts

Host-side API
● initialisation and device selection: Platforms and Devices
● asynchronous operations and synchronisation: Queues and Events
● owning memory Buffers and non-owning memory Views
● submitting work to devices: work division and Accelerators

Device-side API
● plain C++ for device functions and kernels
● shared memory, atomic operations, and memory fences
● primitives for mathematical operations
● warp-level primitives for synchronisation and data exchange (not covered)
● random number generator (not covered)

nota bene:
● most alpaka API objects behave like shared_ptrs, and should be passed by value or by reference to const (i.e. const&)

https://creativecommons.org/licenses/by-sa/4.0/

platforms and devices

1-4 July 2025 A. Bocci - Performance portability with alpaka 18 / 97

alpaka : initialisation and device selection

Platforms and Devices
● identify the type of hardware (e.g. host CPUs or NVIDIA GPUs) and individual devices (e.g. each single

GPU) present on the machine
● the CPU device DevCpu serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, launch kernels, etc.)

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms and devices should be created at the start of the program and used consistently
– may hold an internal state, avoid creating multiple instances for the same hardware

● some common cases

back end alpaka platform alpaka device

CPUs, serial or parallel PlatformCpu DevCpu

NVIDIA GPU, with CUDA PlatformCudaRt DevCudaRt

AMD GPUs, with HIP/ROCm PlatformHipRt DevHipRt

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 19 / 97

platforms and devices

● Alpaka provides a simple API to enumerate the devices on a given platform:

● alpaka::getDevCount(platform)
– returns the number of devices on the given platform

● alpaka::getDevByIdx(platform, index)
– initialises the index-th device on the platform, and returns the corresponding Device object

● alpaka::getDevs(platform)
– initialises all devices on the platform, and returns a vector of Device objects

● alpaka::getName(device)
– returns the name of the given device

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 20 / 97

int main() {
 // the host abstraction always has a single device
 HostPlatform host_platform;
 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
 std::cout << "Found 1 device:\n";
 std::cout << " - " << alpaka::getName(host) << '\n';
 std::cout << std::endl;

 // get all the devices on the accelerator platform
 Platform platform;
 std::vector<Device> devices = alpaka::getDevs(platform);

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';
 std::cout << "Found " << devices.size() << " device(s):\n";
 for (auto const& device : devices)
 std::cout << " - " << alpaka::getName(device) << '\n';
 std::cout << std::endl;
}

your first alpaka application

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 21 / 97

your first alpaka application

int main() {
 // the host abstraction always has a single device
 HostPlatform host_platform;
 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
 std::cout << "Found 1 device:\n";
 std::cout << " - " << alpaka::getName(host) << '\n';
 std::cout << std::endl;

 // get all the devices on the accelerator platform
 Platform platform;
 std::vector<Device> devices = alpaka::getDevs(platform);

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';
 std::cout << "Found " << devices.size() << " device(s):\n";
 for (auto const& device : devices)
 std::cout << " - " << alpaka::getName(device) << '\n';
 std::cout << std::endl;
}

these are the host and accelerator platforms

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 22 / 97

int main() {
 // the host abstraction always has a single device
 HostPlatform host_platform;
 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
 std::cout << "Found 1 device:\n";
 std::cout << " - " << alpaka::getName(host) << '\n';
 std::cout << std::endl;

 // get all the devices on the accelerator platform
 Platform platform;
 std::vector<Device> devices = alpaka::getDevs(platform);

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';
 std::cout << "Found " << devices.size() << " device(s):\n";
 for (auto const& device : devices)
 std::cout << " - " << alpaka::getName(device) << '\n';
 std::cout << std::endl;
}

your first alpaka application

alpaka::core::demangled<T> is a string with

the "human readable" name of c++ type name

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 23 / 97

int main() {
 // the host abstraction always has a single device
 HostPlatform host_platform;
 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
 std::cout << "Found 1 device:\n";
 std::cout << " - " << alpaka::getName(host) << '\n';
 std::cout << std::endl;

 // get all the devices on the accelerator platform
 Platform platform;
 std::vector<Device> devices = alpaka::getDevs(platform);

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';
 std::cout << "Found " << devices.size() << " device(s):\n";
 for (auto const& device : devices)
 std::cout << " - " << alpaka::getName(device) << '\n';
 std::cout << std::endl;
}

your first alpaka application

get the nth device for the given platform

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 24 / 97

int main() {
 // the host abstraction always has a single device
 HostPlatform host_platform;
 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
 std::cout << "Found 1 device:\n";
 std::cout << " - " << alpaka::getName(host) << '\n';
 std::cout << std::endl;

 // get all the devices on the accelerator platform
 Platform platform;
 std::vector<Device> devices = alpaka::getDevs(platform);

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';
 std::cout << "Found " << devices.size() << " device(s):\n";
 for (auto const& device : devices)
 std::cout << " - " << alpaka::getName(device) << '\n';
 std::cout << std::endl;
}

your first alpaka application

get all devices on the platform

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 25 / 97

int main() {
 // the host abstraction always has a single device
 HostPlatform host_platform;
 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
 std::cout << "Found 1 device:\n";
 std::cout << " - " << alpaka::getName(host) << '\n';
 std::cout << std::endl;

 // get all the devices on the accelerator platform
 Platform platform;
 std::vector<Device> devices = alpaka::getDevs(platform);

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';
 std::cout << "Found " << devices.size() << " device(s):\n";
 for (auto const& device : devices)
 std::cout << " - " << alpaka::getName(device) << '\n';
 std::cout << std::endl;
}

your first alpaka application

get the name of each device

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 26 / 97

some important details

#include <iostream>
#include <vector>

#include <alpaka/alpaka.hpp>

#include "config.h"

...

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 27 / 97

some important details

#include <iostream>
#include <vector>

#include <alpaka/alpaka.hpp>

#include "config.h"

...

alpaka/00_enumerate.cc

include the alpaka headers

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 28 / 97

some important details

#include <iostream>
#include <vector>

#include <alpaka/alpaka.hpp>

#include "config.h"

...

alpaka/00_enumerate.cc

include a header that defines the configuration for the various back-ends

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 29 / 97

let’s build it …

● using the CPU as a single-threaded, serial “accelerator”
● the CPU acts as both the “host” and the “device”
● the application runs entirely on the CPU

● using the CUDA GPUs as the “accelerator”
● the CPU acts as the “host”, the GPUs act as the “devices”
● the application launches kernels that run on the GPUs

g++ -std=c++20 -O2 -g \
 -I/opt/alpaka/include -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED \
 00_enumerate.cc \
 -o 00_enumerate_cpu

nvcc -x cu –expt-relaxed-constexpr -std=c++20 -O2 -g \
 -I/opt/alpaka/include -DALPAKA_ACC_GPU_CUDA_ENABLED \
 00_enumerate.cc \
 -o 00_enumerate_cuda

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 30 / 97

… and run it

$./00_enumerate_cpu

Host platform: alpaka::PlatformCpu

Found 1 device:

 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu

Found 1 device(s):

 - Intel Xeon Processor (Cascadelake)

$./00_enumerate_cuda

Host platform: alpaka::PlatformCpu

Found 1 device:

 - Intel Xeon Processor (Cascadelake)

Accelerator platform:
alpaka::PlatformUniformCudaHipRt<alpaka::A
piCudaRt>

Found 1 device(s):

 - Tesla V100-SXM2-32GB

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 31 / 97

how does it work ?

● Alpaka internally uses preprocessor symbols to enable the different backends:
● ALPAKA_ACC_GPU_CUDA_ENABLED for running on NVIDIA GPUs
● ALPAKA_ACC_GPU_HIP_ENABLED for running on AMD GPUs
● ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED for running serially on a CPU
● …

● in the first part of this tutorial we will build separate applications from each example
● each application uses a single back-end
● and is compiled with the corresponding compiler (g++, nvcc, hipcc, …)

● it is also possible to enable more than one back-end at a time
● however, the underlying CUDA and HIP header files will clash, so one needs to use different

“translation units” (compilation of a c++ file) for the different backends
● and separate the host and device parts

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 32 / 97

where is the magic ?

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Platform<Device>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

alpaka/config.h

back end alpaka platform alpaka device

CPUs, serial or parallel PlatformCpu DevCpu

NVIDIA GPU, with CUDA PlatformCudaRt DevCudaRt

AMD GPUs, with HIP/ROCm PlatformHipRt DevHipRt

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

1-4 July 2025 A. Bocci - Performance portability with alpaka 33 / 97

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Platform<Device>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

where is the magic ?
alpaka/config.h

depending on which back-end is enabled ...

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

1-4 July 2025 A. Bocci - Performance portability with alpaka 34 / 97

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Platform<Device>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

where is the magic ?
alpaka/config.h

depending on which back-end is enabled,
Device and Platform are aliased to different types

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

intermezzo: set up the examples

1-4 July 2025 A. Bocci - Performance portability with alpaka 36 / 97

set up the examples

● get the examples from GitHub:

clone the repository with the examples
$ git clone https://github.com/fwyzard/intro_to_alpaka.git -b bologna2025
$ cd intro_to_alpaka
$ ls -l
drwxr-xr-x. 2 abocci abocci 4096 Jul 1 11:14 alpaka
drwxr-xr-x. 2 abocci abocci 4096 Jul 1 11:14 enumerate
-rw-r--r--. 1 abocci abocci 11357 Jun 26 16:57 LICENSE
drwxr-xr-x. 2 abocci abocci 134 Jun 26 17:16 portability

$ cd alpaka/
$ make 00_enumerate_cpu
g++ -std=c++20 … -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED -o 00_enumerate.cc -o 00_enumerate_cpu

$./00_enumerate_cpu
Host platform: alpaka::PlatformCpu
Found 1 device:
 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
 - Intel Xeon Processor (Cascadelake)

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 37 / 97

other back-ends

● automatically build for all architectures

$ make 00_enumerate
g++ -std=c++20 … -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED 00_enumerate.cc -o 00_enumerate_cpu
g++ -std=c++20 … -DALPAKA_ACC_CPU_B_SEQ_T_THREADS_ENABLED 00_enumerate.cc -o 00_enumerate_mt
g++ -std=c++20 … -DALPAKA_ACC_CPU_B_TBB_T_SEQ_ENABLED 00_enumerate.cc -o 00_enumerate_tbb
nvcc -x cu -std=c++20 … -DALPAKA_ACC_GPU_CUDA_ENABLED 00_enumerate.cc -o 00_enumerate_cuda

$./00_enumerate_cuda
Host platform: alpaka::PlatformCpu
Found 1 device:
 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformUniformCudaHipRt<alpaka::ApiCudaRt>
Found 1 device(s):
 - Tesla V100-SXM2-32GB

https://creativecommons.org/licenses/by-sa/4.0/

queues and events

1-4 July 2025 A. Bocci - Performance portability with alpaka 39 / 97

alpaka: asynchronous operations

Queues:
● identify a “work queue” where tasks (memory operations, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread

– from the point of view of the host , queues can be synchronous or asynchronous

● with a synchronous (or blocking) queue:
– any operation is executed immediately, before returning to the caller

– the host automatically waits (blocks) until each operation is complete

● with an asynchronous (or non-blocking) queue:
– any operation is executed in the background, and each call returns immediately, without waiting for its completion

– the host needs to synchronize explicitly with the queue, before accessing the results of the operations

● in general, prefer using a synchronous queue on a CPU, and an asynchronous queue on a GPU
● queues are always associated to a specific device
● most alpaka operations (memory ops, kernel launches, etc.) are associated to a queue
● alpaka does not provide a “default queue”, create one explicitly

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 40 / 97

common operations on queues

● creating a queue of the predefined type associated to a device is as simple as
auto queue = Queue(device);

● waiting for all the asynchronous operations in a queue to complete is as simple as
alpaka::wait(queue);

● enqueue a host function
alpaka::enqueue(queue, host_function);

alpaka::enqueue(queue, [&]() { … });
● enqueue a device function (launch a kernel)

alpaka::exec<Acc>(queue, grid, kernel, args…);
● allocate, memset, fill, or copy memory host and device memory

auto buffer = alpaka::allocAsyncBuf<T, size_t>(queue, size);

alpaka::memset(queue, buffer, 0x00);

alpaka::fill(queue, buffer, value);

alpaka::memcpy(queue, destination, source);

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 41 / 97

alpaka: events and synchronisation

Events:
● events identify points in time along a work queue
● can be used to query or wait for the readiness of a task submitted to a queue
● can be used to synchronise different queues
● like queues, events are always associated to a specific device

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 42 / 97

common operations on events
● events associated to a given device can be created with:

auto event = Event(device);

● events are enqueued to mark a given point along the queue:
alpaka::enqueue(queue, event);

– an event is “complete” once all the work submitted to the queue before the event has been completed

● an event can be used to block the execution on the host until it is complete:
alpaka::wait(event);

– blocks the execution on the host

● or to make an other queue wait until a given event (in a different queue) is complete:
alpaka::wait(other_queue, event);

– does not block execution on the host

– further work submitted to other_queue will only start after event is complete

● an event’s status can also be queried without blocking the execution:
alpaka::isComplete(event);

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 43 / 97

more magic

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)
// CUDA backend
using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)
// HIP/ROCm backend
using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)
// CPU serial backend
using Queue = alpaka::Queue<Device, alpaka::Blocking>;
using Event = alpaka::Event<Queue>;

#else
// no backend specified
#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

alpaka/config.h

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

1-4 July 2025 A. Bocci - Performance portability with alpaka 44 / 97

more magic

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)
// CUDA backend
using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)
// HIP/ROCm backend
using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)
// CPU serial backend
using Queue = alpaka::Queue<Device, alpaka::Blocking>;
using Event = alpaka::Event<Queue>;

#else
// no backend specified
#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

alpaka/config.h

prefer synchronous queues for a CPU

prefer asynchronous queues for a GPU

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

1-4 July 2025 A. Bocci - Performance portability with alpaka 45 / 97

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

playing with queues

alpaka/01_blocking_queue.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 46 / 97

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/01_blocking_queue.cc

playing with queues

we know this part

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 47 / 97

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/01_blocking_queue.cc

playing with queues

create a blocking queue on the host

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 48 / 97

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/01_blocking_queue.cc

playing with queues

this syntax introduces a lambda expression ...

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 49 / 97

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/01_blocking_queue.cc

playing with queues

this syntax introduces a lambda expression

that performs these operations

togethwer with alpaka::enqueue(...), this part
 - creates an object that encapsulates some operations

 - submits those opertations to run in a queue

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 50 / 97

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/01_blocking_queue.cc

playing with queues

wait for the enqueued operations to complete

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 51 / 97

let’s build it and run it

● in this example we are not making use of any accelerator
● let’s build it only for the CPU back-end

● and run it

$ make 01_blocking_queue_cpu
g++ -std=c++20 ... -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED 01_blocking_queue.cc
-o 01_blocking_queue_cpu

$./01_blocking_queue_cpu

Host platform: alpaka::PlatformCpu
Found 1 device:
 - Intel Xeon Processor (Cascadelake)

Enqueue some work
 - host task running...
 - host task complete
Wait for the enqueue work to complete...
All work has completed

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 52 / 97

an async example

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a non-blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::NonBlocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/02_nonblocking_queue.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 53 / 97

an async example

int main() {

 // the host platform always has a single device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << "\n\n";

 // create a non-blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::NonBlocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

alpaka/02_nonblocking_queue.cc

create a non-blocking queue on the host

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 54 / 97

let’s build it and run it

● in this example, too, we are not making use of any accelerator
● let’s build it only for the CPU back-end – with POSIX threads

● and run it

$ make 02_nonblocking_queue_cpu
g++ -std=c++20 ... -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED 02_nonblocking_queue.cc
-pthread -o 02_nonblocking_queue_cpu

$./02_nonblocking_queue_cpu

Host platform: alpaka::PlatformCpu
Found 1 device:
 - Intel Xeon Processor (Cascadelake)

Enqueue some work
Wait for the enqueue work to complete...
 - host task running...
 - host task complete
All work has completed

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 55 / 97

blocking vs non-blocking

$./01_blocking_queue_cpu

Host platform: alpaka::PlatformCpu

Found 1 device:

 - Intel Xeon Processor (Cascadelake)

Enqueue some work

 - host task running...

 - host task complete

Wait for the enqueue work to complete...

All work has completed

$./02_nonblocking_queue_cpu

Host platform: alpaka::PlatformCpu

Found 1 device:

 - Intel Xeon Processor (Cascadelake)

Enqueue some work

Wait for the enqueue work to complete...

 - host task running...

 - host task complete

All work has completed

● with a synchronous (or blocking) queue:
– any operation is executed immediately, before returning to the caller
– the host automatically waits (blocks) until each operation is complete

● with an asynchronous (or non-blocking) queue:
– any operation is executed in the background, and each call returns immediately, without waiting for its completion
– the host needs to synchronize explicitly with the queue, before accessing the results of the operations

https://creativecommons.org/licenses/by-sa/4.0/

memory operations

1-4 July 2025 A. Bocci - Performance portability with alpaka 57 / 97

memory in alpaka

Buffers and Views
● can refer to memory on the host or on any device

– general purpose host memory (e.g. as returned by malloc or new)

– pinned host memory, visible by devices on a given platform (e.g. as returned by cudaMallocHost)

– global device memory (e.g. as returned by cudaMalloc)

● can have arbitrary dimensions
● 0-dimensional buffers and views wrap and provide access to a single element:

● 1-dimensional buffers and views wrap and provide access to an array of elements:

float x = *buffer;
float y = buffer->pt();

float x = buffer[i];

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 58 / 97

memory in alpaka

Buffers and Views
● N-dimensional buffers and views wrap arbitrary memory areas:

● we can use a nicer accessor syntax with c++23 std::mdspan and improved operator[]
– alpaka can already use experimental mdspan support based on https://github.com/kokkos/mdspan

float* p = std::data(buffer);

auto p = alpaka::experimental::getMdSpan(buffer);

// this syntax requires c++23
float f = p[i, j, k] = ...;

// this works with c++17 and later
float g = p(i, j, k);

// or, using an std::array as asingle index
std::array<int, 3> index{i, j, k};
float h = p[index];

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/kokkos/mdspan

1-4 July 2025 A. Bocci - Performance portability with alpaka 59 / 97

memory buffers
● buffers own the memory they point to

● a host memory buffer can use either standard host memory,
or pinned host memory mapped to be visible by the GPUs in a given platform

● a buffer knows what device the memory is on, and how to free it

● buffers have shared ownership of the memory
● like shared_ptr<T>
● making a copy of a buffer creates a second handle to the same underlying memory
● the memory is automatically freed when the last buffer object is destroyed (e.g. goes out of scope)
● with async or queue-ordered buffers, memory is freed when the work submitted to the queue associated

to the buffer is complete

● note that buffers always allow modifying their content
● a Buffer<const T> would not be useful, because its contents could never be set
● a const Buffer<T> does not prevent changes to the contents, as they can be modified through a copy

– alpaka 2.0 introduces ConstBuffer<T> objects, but support is still incomplete

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 60 / 97

● buffer allocations and deallocations can be immediate or queue-ordered
● immediate operations

– allocate and free the memory immediately
– may result in a device-wide synchronisation
– e.g. malloc / free or cudaMalloc / cudaFree

● queue-ordered operations are usually asynchronous, and may cache allocations
– guarantee that the memory is allocated before any further operations submitted to the queue are executed
– guarantee that the memory will be freed once all pending operation in the queue are complete
– e.g. cudaMallocAsync / cudaFreeAsync

– available only on device that support it (CPUs, NVIDIA CUDA ≥ 11.2, AMD ROCm ≥ 5.4)

allocating memory

// allocate an array of "size" floats in standard host memory
auto buffer = alpaka::allocBuf<float, uint32_t>(host, size);

// allocate an array of "size" floats in pinned host memory
// mapped to be efficiently copiable to/from all the devices on the platform
auto buffer = alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

// allocate an array of "size" floats in global device memory
auto buffer = alpaka::allocBuf<float, uint32_t>(device, size);

// allocate an array of "size" floats in global gpu memory, ordered along queue
auto buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 61 / 97

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

alpaka/03_memory.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 62 / 97

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

alpaka/03_memory.cc

allocate buffers

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 63 / 97

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

alpaka/03_memory.cc

using buffers

get the buffers’ memory addresses

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 64 / 97

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

alpaka/03_memory.cc

using buffers

write to and read from
the host buffer

like a vector or array

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 65 / 97

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

alpaka/03_memory.cc

using buffers

memset and memcpy operations
are always asynchronous

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 66 / 97

memory views

● views wrap memory allocated by some other mechanism to provide a common interface
● e.g. a local variable on the stack, or memory owned by an std::vector
● views do not own the underlying memory
● the lifetime of a view should not exceed that of the memory it points to

● views to standard containers
● Alpaka provides adaptors and can automatically use std::array<T, N> and std::vector<T> as views

● using views to emulate buffers to constant objects
● we can wrap a buffer in a constant view: alpaka::ViewConst<Buffer<T>>

float* data = new float[size];
auto view = alpaka::createView(host, data, size); // define a view for a C++ array
alpaka::memcpy(queue, view, device_buffer); // copy the data to the array

std::vector<float> data(size);
alpaka::memcpy(queue, data, device_buffer); // copy the data to the vector

auto const_view = alpaka::ViewConst(device_buffer);
alpaka::memcpy(queue, host_buffer, const_view); // copy the data to the host

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 67 / 97

using views

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // initialise the accelerator platform

 Platform platform;

 // allocate a buffer of floats in mapped host memory

 uint32_t size = 42;

 std::vector<float> host_data(size);

 std::cout << "host vector at " << std::data(host_data) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_data[i] = i;

 }

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // create a read-only view to the device data

 auto const_view = alpaka::ViewConst(device_buffer);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_data, const_view);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) { std::cout << host_data[i] << ' '; }

alpaka/04_views.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 68 / 97

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // initialise the accelerator platform

 Platform platform;

 // allocate a buffer of floats in mapped host memory

 uint32_t size = 42;

 std::vector<float> host_data(size);

 std::cout << "host vector at " << std::data(host_data) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_data[i] = i;

 }

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // create a read-only view to the device data

 auto const_view = alpaka::ViewConst(device_buffer);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_data, const_view);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) { std::cout << host_data[i] << ' '; }

alpaka/04_views.cc

using views

use a vector directly as an alpaka View

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 69 / 97

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // initialise the accelerator platform

 Platform platform;

 // allocate a buffer of floats in mapped host memory

 uint32_t size = 42;

 std::vector<float> host_data(size);

 std::cout << "host vector at " << std::data(host_data) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_data[i] = i;

 }

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // create a read-only view to the device data

 auto const_view = alpaka::ViewConst(device_buffer);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_data, const_view);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) { std::cout << host_data[i] << ' '; }

alpaka/04_views.cc

using views

pass a constant view to the copy
operation to garantee not
changing the device buffer

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

alpaka device API

1-4 July 2025 A. Bocci - Performance portability with alpaka 71 / 97

alpaka device functions

device functions
● device functions are marked with the ALPAKA_FN_ACC macro

● backend-specific functions
– if the implementation of a device function may depend on the backend or on the work division into groups and threads,

it should be templated on the Accelerator type, and take an Accelerator object

● the availability of C++ features depends on the backend and on the device compiler
– dynamic memory allocation is (partially) supported, but strongly discouraged
– c++ std containers should be avoid
– exceptions are usually not supported
– recursive functions are supported only by some backends (CUDA: yes, but often inefficient; SYCL: no)
– c++20 is available in CUDA code only starting from CUDA 12.0, c++23 is not yet available
– etc.

template <typename TAcc>
ALPAKA_FN_ACC
float my_func(TAcc const& acc, float arg) { … }

ALPAKA_FN_ACC
float my_func(float arg) { … }

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 72 / 97

alpaka device functions

examples:
● mathematical operations are similar to what is available in the c++ standard:

– e.g.

alpaka::math::sin(acc, arg)

● atomic operations are similar to what is available in CUDA and HIP
– e.g.

alpaka::atomicAdd(acc, T* address, T value, alpaka::hierarchy::Blocks)

● warp-level functions are similar to what is available in CUDA and HIP
– e.g.

alpaka::warp::ballot(acc, arg)

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 73 / 97

alpaka kernels

kernels
● are implemented as an ALPAKA_FN_ACC void operator()(…) const function

of a dedicated struct or class
– kernels never return anything: -> void

– kernels cannot change any data member on the host: must be declared const

● are always templated on the accelerator type, and take an accelerator object as the first argument

● the TAcc acc argument identifies the back-end and provides the dimensionality and the work division

struct Kernel {
 template <typename TAcc>
 ALPAKA_FN_ACC void operator()(
 TAcc const& acc,
 float const* in1, float const* in2, float* out, size_t size) const
 {
 ...
 }
};

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 74 / 97

alpaka: grids, blocks, threads …

● alpaka maintains the work division into blocks and threads used in CUDA, HIP and OpenCL:
● a kernel launch is divided into a grid of blocks

– the various block are scheduled independently, so they may be running concurrently or at different times

– operations in different blocks cannot be synchronised

– operations in different blocks can communicate only through the device global memory

● each block is composed of threads running in parallel
– threads in a block tend to run concurrently, but may diverge or be scheduled independently from each other

– operations in a block can be synchronised, e.g. with alpaka::syncBlockThreads(acc);

– operations in a block can communicate through shared memory

● blocks can be decomposed into sub-groups, i.e. warps or wavefronts
– threads in the same warp can synchronise and exchange data using more efficient primitives

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 75 / 97

… and elements ?

● to support efficient algorithms running on a CPU, alpaka introduces an additional level in
the execution hierarchy: elements

● each thread in a block may process multiple consecutive elements
● CPU backends usually run with multiple elements per thread

– a good choice might be 16 elements, so 16 consecutive integers or floats can be loaded into a cache line

– the goal is allow a host compiler to auto-vectorise the code, but more research and development is needed !

● GPU backends usually run with a single element per thread
– memory accesses are already coalesced at the warp level, but more writes per thread may improve the bandwidth

– 2 elements per thread could be used with short or float16 data

● kernel should be written to allow for different number of elements per thread
● a common approach is to use

– N blocks, M threads per block, 1 element per thread on a GPU

– N blocks, 1 thread per block, M elements per thread on a CPU

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 76 / 97

a simple strided loop

● alpaka provides helper to implement a N-dimensional strided loops
● the launch grid is tiled and repeated as many times as needed to cover the problem size
● this is usually an efficient approach when all threads can work independently

● also available for N-dimensional loops

● split across different dimensions, for non-uniform blocks, etc.
● for more complicated cases, use the alpaka::getWorkDiv and alpaka::getIdx

functions

struct Kernel {
 template <typename TAcc>
 ALPAKA_FN_ACC void operator()(
 TAcc const& acc,
 float const* in1, float const* in2, float* out, size_t size) const
 {
 for (auto index : alpaka::uniformElements(acc, size)) {
 out[index] = in1[index] + in2[index];
 }
 }
};

 for (auto ndindex : alpaka::uniformElementsND(acc, {z,y,x})) { ... }

https://creativecommons.org/licenses/by-sa/4.0/

launching kernels

1-4 July 2025 A. Bocci - Performance portability with alpaka 78 / 97

alpaka: work submission

Accelerator
● describes “how” a kernel runs on a device

– N-dimensional work division (1D, 2D, 3D, …)

– on the CPU, serial vs parallel execution at the thread and block level (single thread, multi-threads, TBB tasks, …)

– implementation of shared memory, atomic operations, etc.

● the Accelerator c++ type is available only when alpaka is being compiled for a specific back-end
– the accelerator type can be used to specialise code and implement per-accelerator behaviour

– for example, an algorithm can be implemented in device code using a parallel approach for
a GPU-based accelerator, and a serial approach for a CPU-based accelerator

● accelerator objects are created when a kernel is executed, and can only be accessed in device code
– each device function can (should) be templated on the accelerator type, and take an accelerator as its first argument

– the accelerator object can be used to extract the execution configuration (blocks, threads, elements)

Tag
● identifies an Accelerator back-end, without the hardware and work division details

– e.g. TagCpuSerial, TagGpuCudaRt, TagGpuHipRt, …

● unlike the Accelerator, the Tag C++ type is always available

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 79 / 97

launching a kernel

● a kernel launch requires
● the type of the accelerator where the kernel will run
● the queue to submit the work to
● the work division into blocks, threads, and elements
● an instance of the type that implements the kernel
● the arguments to the kernel function

● we provide some helper types and functions
● config.h includes the aliases Acc1D, Acc2D, Acc3D for 1D, 2D and 3D kernels
● WorkDiv.hpp provides the helper function makeWorkDiv<TAcc>(blocks, threads_or_elements)

– taken from Alpaka tests

// launch a 1-dimensional kernel with 32 groups of 32 threads (GPU) or
elements (CPU)
auto grid = makeWorkDiv<Acc1D>(32, 32);
alpaka::exec<Acc1D>(queue, grid, Kernel{}, a.data(), b.data(), sum.data(),
size);

https://creativecommons.org/licenses/by-sa/4.0/

a complete alpaka example

1-4 July 2025 A. Bocci - Performance portability with alpaka 81 / 97

● running on the CPU

● running on the GPU

a complete alpaka example

$./05_kernel_cpu
Host: Intel Xeon Processor (Cascadelake)
Device: Intel Xeon Processor (Cascadelake)
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...
success

alpaka/05_kernel.cc

$./05_kernel_cuda
Host: Intel Xeon Processor (Cascadelake)
Device: Tesla V100-SXM2-32GB
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...
success

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc

1-4 July 2025 A. Bocci - Performance portability with alpaka 82 / 97

● running on the CPU

● running on the GPU

a multidimensional alpaka example

$./06_kernelnd_cpu
Host: Intel Xeon Processor (Cascadelake)
Device: Intel Xeon Processor (Cascadelake)
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (1) threads x (32) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4)
elements...
success

$./06_kernelnd_cuda
Host: Intel Xeon Processor (Cascadelake)
Device: Tesla V100-SXM2-32GB
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...
success

alpaka/06_kernelnd.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/06_kernelnd.cc

alpaka on different back-ends

1-4 July 2025 A. Bocci - Performance portability with alpaka 84 / 97

● parallel CPU back-end, using POSIX threads

parallel execution on CPUs

$./06_kernelnd_mt
Host: Intel Xeon Processor (Cascadelake)
Device: Intel Xeon Processor (Cascadelake)
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...
success

$ make 06_kernelnd_mt
g++ -std=c++20 -O2 -g -I/opt/alpaka/include -DALPAKA_HAS_STD_ATOMIC_REF -pthread
-DALPAKA_ACC_CPU_B_SEQ_T_THREADS_ENABLED 06_kernelnd.cc -o 06_kernelnd_mt

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 85 / 97

● parallel CPU back-end, using the Intel Threading Building Blocks library

parallel execution on CPUs

$./06_kernelnd_tbb
Host: Intel Xeon Processor (Cascadelake)
Device: Intel Xeon Processor (Cascadelake)
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (1) threads x (32) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4)
elements...
success

$ make 06_kernelnd_tbb
g++ -std=c++20 -O2 -g -I/opt/alpaka/include -DALPAKA_HAS_STD_ATOMIC_REF -pthread
-I/opt/miniforge3/include -DALPAKA_ACC_CPU_B_TBB_T_SEQ_ENABLED 06_kernelnd.cc
-L/opt/miniforge3/lib -ltbb -o 06_kernelnd_tbb

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 86 / 97

● AMD GPUs, using the HIP/ROCm runtime back-end

offloading to AMD GPUs

$./06_kernelnd_hip
Host: AMD EPYC 7A53 64-Core Processor
Device: AMD Instinct MI250X
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...
success

$ hipcc -std=c++20 -O2 -g -pthread \
 -I/opt/alpaka/include -DALPAKA_ACC_GPU_HIP_ENABLED \
 06_kernelnd.cc \
 -o 06_kernelnd_hip

Alpaka on the LUMI supercomputer !

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 87 / 97

● Intel GPUs, using the oneAPI back-end

offloading to Intel GPUs

$./06_kernelnd_sycl
Host: Intel(R) Xeon(R) Platinum 8480+
Device: Intel(R) Data Center GPU Max 1100
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...
success

$ icpx -fsycl -std=c++20 -O2 -g -pthread \
 -I/opt/alpaka/include -DALPAKA_ACC_SYCL_ENABLED -DALPAKA_SYCL_ONEAPI_GPU \
 06_kernelnd.cc \
 -o 06_kernelnd_sycl

Alpaka on the Aurora supercomputer ?

https://creativecommons.org/licenses/by-sa/4.0/

alpaka with mdspan

1-4 July 2025 A. Bocci - Performance portability with alpaka 89 / 97

● running on the CPU

● running on the GPU

alpaka with mdspan

 ./07_mdspan_cpu
Host: Intel Xeon Processor (Cascadelake)
Device: Intel Xeon Processor (Cascadelake)
Testing VectorAddKernelMD with mdspan accessors with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4)
elements...
success

alpaka/07_mdspan.cc

$./07_mdspan_cuda
Host: Intel Xeon Processor (Cascadelake)
Device: Tesla V100-SXM2-32GB
Testing VectorAddKernelMD with mdspan accessors with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...
success

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/07_mdspan.cc

a single alpaka application for multiple back-ends

1-4 July 2025 A. Bocci - Performance portability with alpaka 91 / 97

● overall structure
● config.h

– defines different namespaces for each back-end

● backend.h
– provides a simple interface to the code in backend.cc

● backend.cc
– query the devices and accelerators

– declares the code in a different namespace for each back-end

– built N times as shared libraries, once for each back-end (CPU serial, CUDA, HIP, etc.)

● main.cc
– query the host part

– links to the back-ends’ shared libraries

– call each back-end’s implementation

a single application for multiple back-ends

enumerate/
├── Makefile
├── backend.cc
├── backend.h
├── config.h
├── enumerate
├── libbackend.cpu.so
├── libbackend.cuda.so
├── libbackend.hip.so
├── libbackend.mt.so
├── libbackend.tbb.so
└── main.o

enumerate/

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/enumerate/

1-4 July 2025 A. Bocci - Performance portability with alpaka 92 / 97

a single application for multiple back-ends

$./enumerate
Host platform: alpaka::PlatformCpu
Found 1 device:
 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
 - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformUniformCudaHipRt<alpaka::ApiCudaRt>
Found 1 device(s):
 - Tesla V100-SXM2-32GB

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025 A. Bocci - Performance portability with alpaka 93 / 97

a single application for multiple back-ends

$./enumerate -v
...

Accelerator platform: alpaka::PlatformUniformCudaHipRt<alpaka::ApiCudaRt>
Found 1 device(s):
 - Tesla V100-SXM2-32GB
 - Accelerator name: alpaka::AccGpuUniformCudaHipRt<alpaka::ApiCudaRt,
std::integral_constant<long unsigned int, 3>, unsigned int>
 number of multi-processors: 80
 global memory free / total (bytes): 33748942848 / 34072559616
 shared memory per block (bytes): 49152
 max blocks per grid (z, y, x): (65535, 65535, 2147483647)
 max threads per block (z, y, x): (64, 1024, 1024)
 max elements per thread (z, y, x): (4294967295, 4294967295, 4294967295)
 max number of blocks per grid: 4294967295
 max number of threads per block: 1024
 max number of elements per thread: 4294967295
 supported warp sizes: { 32 }
 preferred warp size: 32

https://creativecommons.org/licenses/by-sa/4.0/

summary

1-4 July 2025 A. Bocci - Performance portability with alpaka 95 / 97

summary
● during this tutorial we learned

● what performance portability means and discovered the Alpaka library
● how to set up Alpaka for a simple project
● how to compile a single source file for different back-ends
● what are alpaka platforms, devices, queues and events
● how to work with host and device memory
● how to write device functions and kernels
● how to use an Alpaka accelerator and work division to launch a kernel
● and worked up to a few complete examples

● congratulations!
● now you can write portable and performant applications

https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

Copyright CERN 2025

Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

