Performance portat

-

who am |

Dr. Andrea Bocci <andrea.bocci@cern.ch>, @fwyzard on CERN Mattermost

* applied physicist working on the CMS experiment for over 20 years
* at CERNsince 2010

I've held various roles related to the High Level Trigger
— started out as the b-tagging HLT contact

joined as (what today is called) HLT STORM convener

deputy Trigger Coordinator and Trigger Coordinator

HLT Upgrade convener, and editor for the DAQ and HLT Phase-2 TDR
currently, “GPU Trigger Officer”

for the last years, I've been working on GPUs and performance portability
~— together with a few colleagues at CERN and Fermilab

“Patatrack” pixel track and vertex reconstruction running on GPUs

R&D projects on CUDA, Alpaka, SYCL and Intel oneAPI

support for CUDA, HIP/ROCm, and Alpaka in CMSSW

Patatrack Hackathons'!

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
mailto:andrea.bocci@cern.ch
https://mattermost.web.cern.ch/cms-exp/messages/@fwyzard

performance portability

 what do we mean by software portability ?

* the possibility of running a software application or library on different platforms
- different hardware architectures, different operating systems

- e.g. Windows running on x86, OSX running on ARM, Linux running on RISC-V, etc.

 how do we achieve software portability ?
e write software using a standardised language
- C++, python, Java, etc.
* use standard features
- |EEE floating point numbers
* use standard or portable libraries

- C++standard library, Boost, Eigen, etc.

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

 forexample

#include <cmath>
#include <cstdio>

void print_sqrt(double x) {

printf("The square root of %g is %g\n", x, std::sqrt(x));

int main() {
print_sqrt(2.);

portability/00 hello_world.cc

should behave in the same way on all platforms that support a standard C++ compiler:

The square root of 2 is 1.41421

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/00_hello_world.cc

* writing a program that offloads some of the computations to a GPU is somewhat different
From writing a program that runs just on the CPU

* inside asingle application we have ...

« ... different hardware architectures
 ...different memory spaces

» ... different way to call a function or launch a task
* ... different optimal algorithms

» ...different compilers

» ...different programming languages

* sometimes it may help to think about a GPU like programming a remote machine
* compile for completely different targets
* launching a kernel is similar to running a complete program

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

o) portability: the same exare

Compact Muon Solenoid

#include <cmath>
#include <cstdio>

#include <cuda_runtime.h>

__device__
vold print_sqrt(double x) {
printf("The square root of %g is %g\n", x, std::sqrt(x));

__global__
voild kernel() {
print_sqrt(2.);

int main() {
kernel<<<1, 1>>>();
cudaDeviceSynchronize();

}

portability/01_hello_world.cu

1-4 July 2025 A. Bocci - Performance portability with alpaka

The square root of 2 is 1.41421

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/01_hello_world.cu

#include <cmath>

#include <cstdio>

void print_sqrt(double x) {
printf("The square root of %g is %g\n", x, std::sqrt(x));
}

int main() {
print_sqrt(2.);
}

The square root of 2 is 1.41421)'}

 we could

* wrap the differences in a few macros or classes

* share the common parts

1-4 July 2025

#include <cmath>

#include <cstdio>

#include <cuda_runtime.h>

__device__

vold print_sqrt(double x) {
printf("The square root of %g is %g\n", x,
}

std::sqrt(x));

__global__

voild kernel() {
print_sqrt(2.);

int main() {
kernel<<<1l, 1>>>();
cudaDeviceSynchronize();

}

The square root of 2 is 1.41421

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* notreally
* trivially extending our example to an expensive computation would give horrible performance

« why?
* a3 CPUwill run asingle-threaded program very efficiently
* a GPU will be heavily underutilised, using a single thread out of O(10k)

- use only a small fraction of its computing power and memory bandwidth
- loose any possibility of hiding memory latency, etc.

* and what about different GPU back-ends ?

 what we need is performance portability
* write code in a way that can run on multiple platforms
* leverage their potential
* and achieve (almost) native performance on all of them

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

performance portability

OpenMP AMDCTHIP

p o
OpenCL

@CLW OpenACC @ SSETRED

HOW STANDARDS PROUFERATE:

(485 AC CHARGERS, CHARACTER ENCODINGS, IN STANT MESSAGING, £TC)

4?! RiDICULOUS!
WE NEED To DEVELOP

PV GITUATION: || ONE UNVERSAL SNDRRD | |+ oy ooy

s OKkOS

THERE ARE || USE CASES. THERE. ARE

a|/°)aka "o | O %;' 5 NG

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://xkcd.com/927

the alfaka performance portability library

al~aka is a header-only C++20 abstraction library for heterogeneous software development

* itaims to provide performance portability through
the abstraction of the underlying levels of parallelism

* may expose the underlying details when necessary
* (almost) native performance on different hardware

Thread

Element

supports all platforms of interest for HEP
* x86 and ARM CPUs

- with serial and parallel execution

* stable support for NVIDIA and AMD GPUs
- with CUDA and ROCm backends

* experimental support for Intel GPUs and Altera FPGAs, based on SYCL and oneAPI

| Global Memory |

| Shared Memory |

|Register Memory |

developed at CASUS at HZDR, and at CERN =D
Sl . 3 : { CASUS
open source project, easy to contribute to: https://github.com/alpaka-group/alpaka/ U ol ol AT

oy SYSTEMS UNDERSTANDING

it is production-ready today !
* the latest documentation is available at https://alpaka.readthedocs.io/en/latest/index.html

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/
https://www.casus.science/home/
https://www.hzdr.de/
https://home.cern/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://alpaka.readthedocs.io/en/latest/index.html

1400 -
—~ 1200 A
)
8
< 1000
>
2
= 800+
[+ 3
=
2 600
[
=
F 4004
—— Serial
200 1 —#— Alpaka serial
—¥— Kokkos serial
0 T T T T T T T T
1 2 4 8 14 28 56 112

Concurrent events and threads per process

NVIDIA A40 GPU

2500

A
—

2000

1500 -

1000 -

Throughput (events/s)

500

—— Direct CUDA
—— Alpaka CUDA
—¥— Kokkos CUDA

.

—

2 4 6 8 10
Concurrent events (TBB threads on CPU)

12

AMD MI250 GPU

600 - 4
é}xfﬁwxﬁ,«f} —— =

500 -

Throughput (events/s)
w
=}
o

200
——5 5 vy —— Direct HIP
100 A +
—i— Alpaka HIP
—¥— Kokkos HIP
0 T T T T T T
2 4 6 8 10 12

Concurrent events (TBB threads on CPU)

studies done at CERN and HEP-CCE

» support all platforms of interest to CMS with near-native performance
* evaluated using as a benchmark the Patatrack pixeltrack-standalone demonstrator

» production ready in 2022-2023, with long term support and development plans

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/cms-patatrack/pixeltrack-standalone/

alpaka 1.0.0 released on November 2023
* experimental support for Intel oneAPI, with SYCL Unified Shared Memory model

 supportc++23 std: :mdspan and Kokkos' mdspan

alpaka 1.1.0 released on January 2024 < used in CMS 2024 software releases
e stable support for Intel oneAPI
* implement additional math functions and warp-level functions

alpaka 1.2.0 released on October 2024 < used in CMS 2025 software releases
« more complete support for Intel oneAPI

* introduce helpers for writing parallel kernels

alpaka 1.3.0 released on June 2025
* bugfix release for long term support, stable branch with support for c++17

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/releases/tag/1.0.0
https://www.intel.com/content/www/us/en/developer/articles/code-sample/dpcpp-usm-code-sample.html
https://en.cppreference.com/w/cpp/container/mdspan
https://github.com/kokkos/mdspan
https://github.com/alpaka-group/alpaka/releases/tag/1.1.0
https://github.com/alpaka-group/alpaka/releases/tag/1.2.0
https://github.com/alpaka-group/alpaka/releases/tag/1.3.0

* alpaka 2.0.0 released on June 2025
* move to c++20 and introduce Concepts

* make more device-side operations constexpr

* improve memory buffers and views, support for “constant buffers”

 improve support for Intel oneAPI and Altera FPGA

* under development:

* support grid-wide synchronisation

e support unified memory

* support CUDA graphs /HIP graphs / TBB flow graphs

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/releases/tag/2.0.0
https://github.com/alpaka-group/alpaka/pull/2402
https://github.com/alpaka-group/alpaka/pull/2403
https://github.com/alpaka-group/alpaka/pull/2307

Host-side API

* initialisation and device selection: Platforms and Devices

* asynchronous operations and synchronisation: Queues and Events
* owning memory Buffers and non-owning memory Views

* submitting work to devices: work division and Accelerators

Device-side API

* plain C++ for device functions and kernels
* shared memory, atomic operations, and memory fences

* primitives for mathematical operations
* warp-level primitives for synchronisation and data exchange (not covered)
* random number generator (not covered)

nota bene:

* most alpaka API objects behave like shared_ptrs, and should be passed by value or by reference to const (i.e. const&)

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

platforms and devices

Platforms and Devices

identify the type of hardware (e.g. host CPUs or NVIDIA GPUs) and individual devices (e.g. each single
GPU) present on the machine

the CPU device DevCpu serves two purposes:
- as the "host” device, for managing the data flow (e.g. perform memory allocation and transfers, launch kernels, etc.)
- asan “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

platforms and devices should be created at the start of the program and used consistently

- may hold an internal state, avoid creating multiple instances for the same hardware

some common cases

CPUs, serial or parallel PlatformCpu DevCpu
NVIDIA GPU, with CUDA PlatformCudaRt DevCudaRt
AMD GPUs, with HIP/ROCm PlatformHipRt DevHipRt

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

» Alpaka provides a simple API to enumerate the devices on a given platform:

 alpaka::getDevCount(platform)

- returns the number of devices on the given platform

 alpaka::getDevByIdx(platform, index)

- initialises the index-th device on the platform, and returns the corresponding Device object

 alpaka::getDevs(platform)

- initialises all devices on the platform, and returns a vector of Device objects

* alpaka::getName(device)
- returns the name of the given device

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

int main() {
// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << "\n';
std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

// get all the devices on the accelerator platform
Platform platform;
std::vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)
std::cout << " - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

1-4 July 2025 A. Bocci - Performance portability with alpaka

alpaka/00_enumerate.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

=) your Ffirst alpaka applicatic

alpaka/00_enumerate.cc

int main() {
// the host abstraction always has a single device
HostPlatform host _platform;
Host host = alpaka::getDevByIdx(host platform, 0Ou);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << "\n';
std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

these are the host and accelerator platforms

// get all the devices on the accelerator platform
Platform platform;
std::vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)
std::cout << " - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

=) your Ffirst alpaka applicatic

alpaka/00_enumerate.cc

int main() {
// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);

std::cout << "Host platform: << alpaka::core::demangled<HostPlatform> << '\n';
std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

alpaka: :core: :demangled<T> is a string with

the "human readable" name of c++ type name

// get all the devices on the accelerator platform
Platform platform;
std::vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)
std::cout << " - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

=) your Ffirst alpaka applicatic

alpaka/00_enumerate.cc

int main() {

// the host abstraction always has a single device [
HostPlatform host_platform; : :
Host host = alpaka::getDevByIdx(host_platform, Ou); get the n® device for the given platform l

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << "\n';
std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

// get all the devices on the accelerator platform
Platform platform;
std::vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)
std::cout << " - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

=) your Ffirst alpaka applicatic

alpaka/00_enumerate.cc

int main() {
// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << "\n';
std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

// get all the devices on the accelerator platform
Platform platform;
std::vector<Device> devices = alpaka::getDevs(platform);

get all devices on the platform

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)
std::cout << " - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

= your first alpaka application

int main() {
// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << "\n';
std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

alpaka/00_enumerate.cc

// get all the devices on the accelerator platform
Platform platform;

get the name of each device l

std::vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)
std::cout << " - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

#include
#include

#include

#include

<iostream>
<vector>

<alpaka/alpaka.hpp>

"config.h"

alpaka/00_enumerate.cc

1-4 July 2025

A. Boccai -

Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

some important details

#include <iostream> alpaka/00_enumerate.cc
#include <vector> I

#include <alpaka/alpaka.hpp>
paka/alp PP include the alpaka headers

#include "config.h"

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

some important details

#include <iostream> alpaka/00_enumerate.cc
#include <vector>

#include <alpaka/alpaka.hpp>

#include "config.h"

include a header that defines the configuration for the various back-ends

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

let's build it ...

e using the CPU as a single-threaded, serial “accelerator”
* the CPU acts as both the “host” and the “device”
* the application runs entirely on the CPU

g++ -std=c++20 -02 -g \
-1 /include -D
00_enumerate.cc \
-0 00_enumerate_cpu

e using the CUDA GPUs as the “accelerator”
* the CPU acts as the “host”, the GPUs act as the “devices”
* the application launches kernels that run on the GPUs

nvcc -Xx cu -expt-relaxed-constexpr -std=c++20 -02 -g \
-1 /include -D \
00_enumerate.cc \
-0 00_enumerate_cuda

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

...and run it

S ./00_enumerate_cpu S ./00_enumerate_cuda
Host platform: alpaka::PlatformCpu Host platform: alpaka::PlatformCpu
Found 1 device: Found 1 device:

- Intel Xeon Processor (Cascadelake) - Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu Accelerator platform:

Found 1 device(s): S}giggéézlatformUniformCudaHipRt<a1paka::A

Found 1 device(s):
- Tesla V100-SXM2-32GB

- Intel Xeon Processor (Cascadelake)

1-4 July 2025 A. Bocci - Performance portability with alpaka 30/97

https://creativecommons.org/licenses/by-sa/4.0/

* Alpakainternally uses preprocessor symbols to enable the different backends:
 ALPAKA_ACC_GPU_CUDA_ENABLED for running on NVIDIA GPUs
* ALPAKA_ ACC_GPU_HIP_ENABLED for running on AMD GPUs
 ALPAKA_ACC _CPU_B_SEQ T_SEQ_ENABLED fFor running serially on a CPU

* in the first part of this tutorial we will build separate applications from each example
* each application uses a single back-end
* andis compiled with the corresponding compiler (g++, nvcc, hipcg, ...)

* jtisalso possible to enable more than one back-end at a time

* however, the underlying CUDA and HIP header files will clash, so one needs to use different
“translation units” (compilation of a c++ file) for the different backends

* and separate the host and device parts

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

z
2
s
o
@
<
s
s
8
g
E
s
S

1-4 July 2025

#1f defined(ALPAKA ACC_GPU_CUDA_ENABLED)
// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA ACC_GPU HIP ENABLED)
// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA ACC_CPU_B_SEQ T_SEQ ENABLED)

// CPU serial backend
using Device = alpaka::DevCpu;
using Platform = alpaka::Platform<Device>;

#else
// no backend specified

CPUs, serial or parallel

NVIDIA GPU, with CUDA
AMD GPUs, with HIP/ROCm

alpaka/config.h

PlatformCpu

PlatformCudaRt
PlatformHipRt

DevCpu

DevCudaRt
DevHipRt

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA ACC_GPU_HIP_ENABLED, ALPAKA ACC_CPU_B_SEQ T_SEQ ENABLED

#endif

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

z
2
s
o
@
<
s
s
8
g
E
s
S

#1f defined(ALPAKA ACC_GPU_CUDA_ENABLED) alpaka/config.h
// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend)))
vslng PRV = almele: diala: depending on which back-end is enabled ...

using Platform = alpaka::Platform<Device>;

#telif defined(ALPAKA_ACC_CPU _B_SEQ T_SEQ ENABLED)
// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Platform<Device>;

#else
// no backend specified
#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ ACC_GPU_HIP_ENABLED, ALPAKA ACC_CPU B_SEQ T _SEQ ENABLED

#endif

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

z
2
s
o
@
<
s
s
8
g
E
s
S

#1f defined(ALPAKA_ACC_GPU_CUDA_ENABLED) alpaka/config.h
// CUDA backend
using Device = alpaka::DevCudaRt;

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend)))
S Bevie = ailsele: S depending on which back-end is enabled,

Ui Plartem = alpakasdolatiorndicices Device and Platform are aliased to different types

#elif defined(ALPAKA ACC_CPU B_SEQ T_SEQ ENABLED)
// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Platform<Device>;

#else
// no backend specified
#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ ACC_GPU_HIP_ENABLED, ALPAKA ACC_CPU B_SEQ T _SEQ ENABLED

#endif

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

intermezzo: set up the examples

set up the examples - &=

get the examples from GitHub:

$ git clone https://github.com/fwyzard/intro_to_alpaka.git -b bologna2025
$ cd intro_to_alpaka

S 1s -1

drwxr-xr-x. abocci abocci 4096 Jul 1 11:14

drwxr-xr-x. abocci abocci 4096 Jul 1 11:14

-rW-T--r--, abocci abocci 11357 Jun 26 16:57 LICENSE

drwxr-xr-x. abocci abocci 134 Jun 26 17:16

$ cd alpaka/
$ make 00_enumerate_cpu
g++ -std=c++20 .. -D -0 00_enumerate.cc -o 00_enumerate_cpu

$./00_enumerate_cpu
Host platform: alpaka::PlatformCpu
Found 1 device:

- Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
- Intel Xeon Processor (Cascadelake)

1-4 July 2025 A. Bocci - Performance portability with alpaka 36 /97

https://creativecommons.org/licenses/by-sa/4.0/

automatically build for all architectures

$ make 00_enumerate
g++ -std=c++20 .. -D
g++ -std=c++20 .. -D
g++ -std=c++20 .. -D
nvcc -X cu -std=c++20 .. -D

$./00_enumerate_cuda
Host platform: alpaka::PlatformCpu
Found 1 device:

- Intel Xeon Processor (Cascadelake)

00_enumerate.cc
00_enumerate.cc
00_enumerate.cc
00_enumerate.cc

Accelerator platform: alpaka::PlatformUniformCudaHipRt<alpaka::ApiCudaRt>

Found 1 device(s):
- Tesla V100-SXM2-32GB

1-4 July 2025 A. Bocci - Performance portability with alpaka

-0 00_enumerate_cpu
-0 00_enumerate_mt

-0 00_enumerate_tbb
-0 00_enumerate_cuda

37/97

https://creativecommons.org/licenses/by-sa/4.0/

queues and events

* identify a “work queue” where tasks (memory operations, kernel executions, ...) are executed in order
- for example, a queue could represent an underlying CUDA stream or a CPU thread
- from the point of view of the host, queues can be synchronous or asynchronous

* with a synchronous (or blocking) queue:
- any operation is executed immediately, before returning to the caller
- the host automatically waits (blocks) until each operation is complete

* with an asynchronous (or non-blocking) queue:
- any operation is executed in the background, and each call returns immediately, without waiting for its completion
- the host needs to synchronize explicitly with the queue, before accessing the results of the operations

* ingeneral, prefer using a synchronous queue on a CPU, and an asynchronous queue on a GPU
* queues are always associated to a specific device

* most alpaka operations (memory ops, kernel launches, etc.) are associated to a queue

» alpaka does not provide a “default queue”, create one explicitly

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* creating a queue of the predefined type associated to a device is as simple as
auto queue = Queue(device);

* waiting for all the asynchronous operations in a queue to complete is as simple as
alpaka: :wait(queue);

* enqueue a host function
alpaka: :enqueue(queue, host function);
alpaka::enqueue(queue, [&]() { .. });

* enqueue a device function (launch a kernel)
alpaka: :exec<Acc>(queue, grid, kernel, args..);

* allocate, memset, fill, or copy memory host and device memory
auto buffer = alpaka::allocAsyncBuf<T, size t>(queue, size);
alpaka: :memset(queue, buffer, 0x00);
alpaka::fill(queue, buffer, value);
alpaka: :memcpy(queue, destination, source);

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

Events:
* events identify points in time along a work queue
can be used to query or wait for the readiness of a task submitted to a queue
can be used to synchronise different queues
like queues, events are always associated to a specific device

1- 4July 2025 A. BOCCI - PerFormance portability with alpaka

Compact Muon Solenoid

i e
41/%7(31?@!

https://creativecommons.org/licenses/by-sa/4.0/

* events associated to a given device can be created with:
auto event = Event(device);

* events are enqueued to mark a given point along the queue:

alpaka: :enqueue(queue, event);
- aneventis “complete” once all the work submitted to the queue before the event has been completed

* anevent can be used to block the execution on the host until it is complete:
alpaka: :wait(event);
- blocks the execution on the host

* or to make an other queue wait until a given event (in a different queue) is complete:
alpaka: :wait(other_queue, event);

- does not block execution on the host
- further work submitted to other_queue will only start after event is complete

* an event's status can also be queried without blocking the execution:
alpaka::isComplete(event);

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

z
2
s
o
@
<
s
s
8
g
E
s
S

more magic

alpaka/config.h

#1f defined(ALPAKA ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA ACC_GPU HIP_ENABLED)

// HIP/ROCm backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA ACC_CPU B_SEQ T_SEQ ENABLED)

// CPU serial backend

using Queue = alpaka::Queue<Device, alpaka::Blocking>;
using Event = alpaka::Event<Queue>;

#else
// no backend specified
#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ ACC_GPU_HIP_ENABLED, ALPAKA ACC_CPU B_SEQ T SEQ ENABLED

#endif

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

more magic

z
2
s
o
@
<
s
s
8
g
E
s
S

1-4 July 2025

#1f defined(ALPAKA ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA ACC_GPU HIP_ENABLED)

// HIP/ROCm backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA ACC_CPU B_SEQ T_SEQ ENABLED)

// CPU serial backend

using Queue = alpaka::Queue<Device, alpaka::Blocking>;
using Event = alpaka::Event<Queue>;

#else
// no backend specified

alpaka/config.h

prefer asynchronous queues for a GPU

prefer synchronous queues for a CPU l

#error Please define one of ALPAKA ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA ACC_CPU_B_SEQ T_SEQ ENABLED

#endif

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

int main() {
// the host platform always has a sing
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_p

std::cout << "Host platform: << alpa

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName

// create a blocking host queue and su
alpaka: :Queue<Host, alpaka::Blocking>

std::cout << "Enqueue some work\n";

alpaka::enqueue(queue, []() noexcept {
std::cout << " - host task running.
std::this_thread::sleep_for(std::chr
std::cout << " - host task complete

1

// wait for the work to complete
std::cout << "Wait for the enqueue wor
alpaka::wait(queue);

1-4 July 2025

std::cout << "All work has completed\n";

le device

latform, Ou);

ka::core::demangled<HostPlatform> << '\n';

(host) << "\n\n";

bmit some work to it
queue{host};

A\n";
ono: :seconds(5u));

\n";

k to complete...\n";

n
3

A. Bocci - Performance portability with alpaka

alpaka/01 _blocking queue.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

int main() {
// the host platform always has a sing
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_p

std::cout << "Host platform: " << alpa

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName

// create a blocking host queue and su
alpaka: :Queue<Host, alpaka::Blocking>

std::cout << "Enqueue some work\n";

alpaka::enqueue(queue, []() noexcept {
std::cout << " - host task running.
std::this_thread::sleep_for(std::chr
std::cout << " - host task complete

1

// wait for the work to complete
std::cout << "Wait for the enqueue wor
alpaka::wait(queue);

1-4 July 2025

std::cout << "All work has completed\n";

le device

latform, Ou);

ka::core::demangled<HostPlatform> << '\n';

(host) << "\n\n";

bmit some work to it
queue{host};

A\n";
ono: :seconds(5u));

\n";

k to complete...\n";

n
3

A. Bocci - Performance portability with alpaka

alpaka/01 _blocking queue.cc

we know this part

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

1-4 July 2025

int main() {
// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);

std::cout << "Host platform: << alpaka::core::demangled<HostPlatform> <<

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << "\n\n";

// create a blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::Blocking> queue{host};

std::cout << "Enqueue some work\n";

alpaka::enqueue(queue, []() noexcept {
std::cout << "

std::this_thread::sleep_for(std::chrono::seconds(5u));

" - host task complete\n";

- host task running...\n";

std::cout <<

1

// wait for the work to complete

std::cout << "Wait for the enqueue work to complete...\n";
alpaka::wait(queue);

std::cout << "All work has completed\n";

alpaka/01 _blocking queue.cc

‘\n';

create a blocking queue on the host

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

int main() {
// the host platform always has a sing
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_p

std::cout << "Host platform: << alpa

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName

// create a blocking host queue and su
alpaka: :Queue<Host, alpaka::Blocking>

std::cout << "Enqueue some work\n";

alpaka::enqueue(queue, []() noexcept {
std::cout << " - host task running.
std::this_thread::sleep_for(std::chr
std::cout << " - host task complete

1

// wait for the work to complete
std::cout << "Wait for the enqueue wor
alpaka::wait(queue);

std::cout << "All work has completed\n";

le device

latform, Ou);

ka::core::demangled<HostPlatform> << '\n';

(host) << "\n\n";

bmit some work to it
queue{host};

alpaka/01 _blocking queue.cc

this syntax introduces a lambda expression ...

A\n";
ono: :seconds(5u));

\n";

k to complete...\n";

n
3

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

playing with queues -

int main() {
// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);
std::cout << "Host platform: "
std::cout << "Found 1 device:\n";

std::cout << << alpaka::getName(host) << "\n\n";
// create a blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::Blocking> queue{host};

std::cout << "Enqueue some work\n";

alpaka::enqueue(queue, []() noexcept {
std::cout << "

std::this_thread::sleep_for(std::chrono::seconds(5u));

" - host task complete\n";

- host task running...\n";

std::cout <<

1

// wait for the work to complete

std::cout << "Wait for the enqueue work to complete...\n";
alpaka::wait(queue);

std::cout << "All work has completed\n";

<< alpaka::core::demangled<HostPlatform> <<

alpaka/01 _blocking queue.cc

this syntax introduces a lambda expression
that performs these operations

togethwer with alpaka: :enqueue(...), this part
- creates an object that encapsulates some operations
- submits those opertations to run in a queue

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

int main() {
// the host platform always has a sing
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_p

std::cout << "Host platform: << alpa

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName

// create a blocking host queue and su
alpaka: :Queue<Host, alpaka::Blocking>

std::cout << "Enqueue some work\n";

alpaka::enqueue(queue, []() noexcept {
std::cout << " - host task running.
std::this_thread::sleep_for(std::chr
std::cout << " - host task complete

1

// wait for the work to complete
std::cout << "Wait for the enqueue wor
alpaka::wait(queue);

1-4 July 2025

std::cout << "All work has completed\n";

le device

latform, Ou);

ka::core::demangled<HostPlatform> << '\n';

(host) << "\n\n";

bmit some work to it
queue{host};

A\n";
ono: :seconds(5u));

\n";

alpaka/01 _blocking queue.cc

k to complete...\n";

n
3

A. Bocci - Performance portability with alpaka

wait for the enqueued operations to complete

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

in this example we are not making use of any accelerator
* let's build it only for the CPU back-end

S make 01_blocking_queue_cpu
g++ -std=c++20 ... -D 01 blocking queue.cc
-0 01 _blocking queue cpu

and run it
$./01_blocking_queue_cpu

Host platform: alpaka::PlatformCpu
Found 1 device:
- Intel Xeon Processor (Cascadelake)

Enqueue some work

- host task running...

- host task complete
Wait for the enqueue work to complete...
ALl work has completed

1-4 July 2025 A. Bocci - Performance portability with alpaka 51/97

https://creativecommons.org/licenses/by-sa/4.0/

an async example

int main() { alpaka/02_nonblocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, 0Ou);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

std::cout << "Found 1 device:\n";

" n

std::cout << - " << alpaka::getName(host) << "\n\n";

// create a non-blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::NonBlocking> queue{host};

std::cout << "Engueue some work\n";
alpaka::enqueue(queue, []() noexcept {

n n

- host task running...\n";
std::this_thread::sleep_for(std::chrono::seconds(5u));
" - host task complete\n";

std::cout <<

std::cout <<

13

// wait for the work to complete

std::cout << "Wait for the enqueue work to complete...\n";
alpaka::wait(queue);

std::cout << "All work has completed\n";

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

an async example -

int main() { alpaka/02_nonblocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, 0Ou);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

std::cout << "Found 1 device:\n";

" n

std::cout << - " << alpaka::getName(host) << "\n\n";

// create a non-blocking host queue and submit some work to it create a nOn-b(OCking queue on the hOSt l
alpaka: :Queue<Host, alpaka::NonBlocking> queue{host};

std::cout << "Engueue some work\n";
alpaka::enqueue(queue, []() noexcept {

n n

std::cout << - host task running...\n";

std::this_thread::sleep_for(std::chrono::seconds(5u));

std::cout <<

13

- host task complete\n";

// wait for the work to complete

std::cout << "Wait for the enqueue work to complete...\n";
alpaka::wait(queue);

std::cout << "All work has completed\n";

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

in this example, too, we are not making use of any accelerator
* let's build it only for the CPU back-end — with POSIX threads

S make 02_nonblocking_queue_cpu
g++ -std=c++20 ... -D 02_nonblocking queue.cc
-0 02_nonblocking queue cpu

and run it
$./02_nonblocking_queue_cpu

Host platform: alpaka::PlatformCpu
Found 1 device:
- Intel Xeon Processor (Cascadelake)

Enqueue some work

Wait for the enqueue work to complete...
- host task running...
- host task complete

ALl work has completed

1-4 July 2025 A. Bocci - Performance portability with alpaka 54 /97

https://creativecommons.org/licenses/by-sa/4.0/

Q)
<
N

i

.
..’"
S

&0
e T

20t
-

$./01_blocking_queue_cpu S ./02_nonblocking_queue_cpu
Host platform: alpaka::PlatformCpu Host platform: alpaka::PlatformCpu
Found 1 device: Found 1 device:

- Intel Xeon Processor (Cascadelake) - Intel Xeon Processor (Cascadelake)

Enqueue some work Enqueue some work
- host task running... N Wait for the enqueue work to complete...

- host task complete N host task running...
Wait for the enqueue work to complete... - host task complete
All work has completed | ALL work has completed

* with a synchronous (or blocking) queue:
— any operation is executed immediately, before returning to the caller
~— the host automatically waits (blocks) until each operation is complete

* with an asynchronous (or non-blocking) queue:
— anyoperation is executed in the background, and each call returns immediately, without waiting for its completion
~— the host needs to synchronize explicitly with the queue, before accessing the results of the operations

1-4 July 2025 A. Bocci - Performance portability with alpaka 55/97

https://creativecommons.org/licenses/by-sa/4.0/

memory operations

Buffers and Views
* canrefer to memory on the host or on any device

general purpose host memory (e.g. as returned by malloc or new)
pinned host memory, visible by devices on a given platform (e.g. as returned by cudaMallocHost)
global device memory (e.g. as returned by cudaMalloc)

* can have arbitrary dimensions

* 0-dimensional buffers and views wrap and provide access to a single element:

float x
float vy

*buffer;
buffer->pt();

* 1-dimensional buffers and views wrap and provide access to an array of elements:

1-4 July 2025

float x = buffer[i];

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

memory in alpaka -

Buffers and Views
* N-dimensional buffers and views wrap arbitrary memory areas:

float* p = std::data(buffer);

* Wwe can use a nicer accessor syntax with c++23 std: :mdspan and improved operator|]
- alpaka can already use experimental mdspan support based on https://github.com/kokkos/mdspan

auto p = alpaka::experimental::getMdSpan(buffer);

// this syntax requires c++23
float f = p[i, j, k] = ...}

// this works with c++17 and later
float g = p(i, j, k);

// or, using an std::array as asingle index
std::array<int, 3> index{i, j, k};
float h = p[index];

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/kokkos/mdspan

memory buffers

* buffers own the memory they point to

* ahost memory buffer can use either standard host memory,
or pinned host memory mapped to be visible by the GPUs in a given platform

* abuffer knows what device the memory is on, and how to free it

» buffers have shared ownership of the memory
* like shared ptr<T>
* making a copy of a buffer creates a second handle to the same underlying memory
* the memory is automatically freed when the last buffer object is destroyed (e.g. goes out of scope)

* with async or queue-ordered buffers, memory is freed when the work submitted to the queue associated
to the buffer is complete

* note that buffers always allow modifying their content
« aBuffer<const T>would not be useful, because its contents could never be set
« aconst Buffer<T> does not prevent changes to the contents, as they can be modified through a copy

- alpaka 2.0 introduces ConstBuffer<T> objects, but supportis still incomplete

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

1-4 July 2025

buffer allocations and deallocations can be immediate or queue-ordered
* immediate operations
— allocate and free the memory immediately
may result in a device-wide synchronisation
e.g. malloc / free or cudaMalloc / cudaFree

// allocate an array of "size" floats in standard host memory
auto buffer = alpaka::allocBuf<float, uint32 t>(host, size);

// allocate an array of "size" floats in pinned host memory
// mapped to be efficiently copiable to/from all the devices on the platform
auto buffer = alpaka::allocMappedBuf<float, uint32 t>(host, platform, size);

// allocate an array of "size" floats in global device memory
auto buffer = alpaka::allocBuf<float, uint32 t>(device, size);

queue-ordered operations are usually asynchronous, and may cache allocations

guarantee that the memory is allocated before any further operations submitted to the queue are executed
guarantee that the memory will be freed once all pending operation in the queue are complete
e.g. cudaMallocAsync / cudaFreeAsync

// allocate an array of "size" floats in global gpu memory, ordered along queue
auto buffer = alpaka::allocAsyncBuf<float, uint32 t>(queue, size);

available only on device that support it (CPUs, NVIDIA CUDA = 11.2, AMD ROCm = 5.4)

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

using buffers

alpaka/03 _memory.cc

// use the single host device
HostPlatform host _platform;
Host host = alpaka::getDevByIdx(host_platform, 0Ou);

std::cout << "Host: << alpaka::getName(host) << '\n';
// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32 t>(host, platform, size);

std: :cout
<< "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values

for (uint32 t 1 = 0; 1 < size; ++1) {
host_buffer[i] = i;

}

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);

std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

1-4 July 2025

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32 t 1 = 0; 1 < size; ++1) {

}

// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer =

alpaka::aTlocAsyncBuf<float, uint32 t>(queue, size);
std::cout << "memory buffer on "
<< alpaka::getName(alpaka: :getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

std::cout << host_buffer[i] << ' ';

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

// use the single host device
HostPlatform host _platform;
Host host = alpaka::getDevByIdx(host_platform, 0Ou);

std::cout << "Host: << alpaka::getName(host) << '\n';

// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32 t>(host, platform, size)

std: :cout

// fill the host buffers with values\\\\a\ﬁ@%%qu
for (uint32_t 1 = 0; 1 < size; ++1) { T
host_buffer[i] = 1;

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);

std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

<< "pinned host memory buffef\at " << std::data(host_buffer) << "\n\n";

} N

allocate buffers

1-4 July 2025

alpaka/03 _memory.cc

[/ allocate a buffer of floats in global device memory, asynchronously

auto device_ buffer = .
alpaka::allocAsyncBuf<float, uint32 t>(queue, size)

std::cout << "memory buffA’ on "
<< alpaka::getN#me(alpaka::getDev(device_buffer))
<< " at " << spﬂ::data(device_buffer) << "\n\n";
/

// set the device memopy to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// copy Ebg/ﬁontents of the device buffer to the host buffer
__alpaka: :memcpy(queue, host_buffer, device buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32 t 1 = 0; 1 < size; ++1) {

std::cout << host_buffer[i] << ' ';

}

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

alpaka/03 memory.cc

// use the single host device {
HostPlatform host_platform; // allocate a buffer of floats in global device memory, asynchronously
Host host = alpaka::getDevByIdx(host_platform, Qu); auto device_buffer =

alpaka::aTlocAsynEBuf<float, uint32 t>(queue, size);

std::cout << "Host: << alpaka::getName(host) << '"\n';

std::cout << "memory buffer on
<< alpaka::getName(alpaka::getDev(device_buffer))
<< " at " <{ std::data(device_bufferﬂ << "\n\n";

// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer = A}
alpaka::allocMappedBuf<float, uint32 t>(host, platform, size); // set the device memory to a}l eros (byte-wise, not element-wise)

std: :cout alpaka::memset(queue{/dev%cé:buffer, 0x00) ;
<< "pinned host memory buffer at " <{ std::data(host_bufferj << "\n\n"; - —

‘ _— // copy the contents of the device buffer to the host buffer

g UL e oSt IBUiErs vl vaElss J B alpaka: :memcpy(queue, host_buffer, device_buffer);
for (uint32 t 1 = 0; 1 < size; ++1) {)
host_buffer[i] = 1; [
) - [l |1 t) FF 5 (j(j // the device buffer goes out of scope, but the memory is freed only
get the bulTers memory d resses // once all enqueued operations have completed

}

// initialise the accelerator platform
Platform platform;

1 (e e Frst deaviee // wait for all operations to complete

. . lpaka: :wait g
Device device = alpaka::getDevByIdx(platform, 0Ou); llze RaE o e Ene)

std::cout << "Device: << alpaka::getName(device) << '\n';

// read the content of the host buffer

/ 3 for (uint32 t 1 = 0; 1 < size; ++1) {
create a work queue

Queue queue{device}; }

std::cout << host_buffer[i] << ' ';

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

using buffers

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Qu);

std::cout << "Host: << alpaka::getName(host) << '"\n';
// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32 t>(host, platform, size);

std::cout
<< "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values .
for (uint32 t 1= 0; 1 < size; ++1) { Write to and read from

((host_buffer[i] = i}t o the host buffer
) like a vector or array

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, 0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

alpaka/03 memory.cc

// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer =) .
alpaka::aTlocAsyncBuf<float, uint32 t>(queue, size);

std::cout << "memory buffer on "

<< alpaka::getName(alpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
\// once all enqueued operations have completed

\
I
\

\

// wait for all operations to complete
alpaka::wait(queue);

\

\

// read the content of the host buffer

for (j}n£§ift 1 =0; 1< size; ++1) {
:cou

std: 4 host_buffer[i]] << ' ';

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

alpaka/03 memory.cc

// use the single host device {
HostPlatform host_platform; // allocate a buffer of floats in global device memory, asynchronously
Host host = alpaka::getDevByIdx(host_platform, Qu); auto device_buffer =

alpaka::aTlocAsynEBuf<ﬂoat, uint32 t>(queue, size);

std::cout << "Host: << alpaka::getName(host) << '"\n';

std::cout << "memory buffer on
<< alpaka::getName(alpaka::getDev(device_buffer))

// allocate a buffer of floats in pinned host memory e U omt e s cdstR(davin Butee) e imials

uint32_t size = 42;
auto host_buffer =

alpaka::allocMappedBuf<float, uint32 t>(host, platform, size); // set the device memory to all zeros (byte-wise, not element-wise)
std: :cout) /,,,/Jf—!)[alpaka: :memset(queue, device_buffer, OXOO)]

<< "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

L2

1 the b buff Lth val / // copy the contents of the device buffer to the host buffer
g UL e oSt IBUiErs vl vaElss / P S ff)[alpaka::memcpy(queue, host_buffer, device_buffer)]
for (uint32 t 1 = 0; 1 < size; ++1) { [—

host_buffer[i] = i; LJ},,,,7‘,,,,7%7% — _ .
) memset and memcpy Operatlons ~// the device buffer goes out of scope, but the memory is freed only

// ence all enqueued operations have completed

are always asynchronous ;

// initialise the accelerator platform
Platform platform;
// use the first device

\

// wait Nr all operations to complete
[alpaka: :wait(queue);l

Device device = alpaka::getDevByIdx(platform, 0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// read the content of the host buffer

/ 3 for (uint32 t 1 = 0; 1 < size; ++1) {
create a work queue

Queue queue{device}; }

std::cout << host_buffer[i] << ' ';

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

Memory Views

* views wrap memory allocated by some other mechanism to provide a common interface
* eg. alocalvariable on the stack, or memory owned by an std: : vector
* views do not own the underlying memory

* the lifetime of a view should not exceed that of the memory it points to

float* data = new float[size];
auto view = alpaka::createView(host, data, size); // define a view for a C++ array
alpaka: :memcpy(queue, view, device buffer); // copy the data to the array

* views to standard containers
* Alpaka provides adaptors and can automatically use std: :array<T, N>andstd::vector<T> asviews

std: :vector<float> data(size);
alpaka: :memcpy(queue, data, device buffer); // copy the data to the vector

* using views to emulate buffers to constant objects
* we can wrap a bufferin a constant view: alpaka: :ViewConst<Buffer<T>>

auto const_view = alpaka::ViewConst(device buffer);
alpaka: :memcpy(queue, host_buffer, const_view); // copy the data to the host

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

using views

alpaka/04 views.cc

// use the single host device

HostPlatform host_platform;

Host host = alpaka::getDevByIdx(host_platform, 0Ou);
std::cout << "Host: " << alpaka::getName(host) << '\n';
// initialise the accelerator platform

Platform platform;

// allocate a buffer of floats in mapped host memory

uint32_t size = 42;

std::vector<float> host_data(size);

std::cout << "host vector at " << std::data(host_data) << "\n\n";

// fill the host buffers with values
for (uint32 t 1 = 0; 1 < size; ++1) {
host_data[i] = 1;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);
std::cout << "Device: " << alpaka::getName(device) << '\n';
// create a work queue

Queue queue{device};

Compact Muon Solenoid

// allocate a buffer of floats in global device memory, asynchronously
auto device_ buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);
std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device buffer, 0x00);

// create a read-only view to the device data

auto const_view = alpaka::ViewConst(device buffer);

// copy the contents of the device buffer to the host buffer

alpaka: :memcpy(queue, host_data, const_view);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32 t 1 = 0; 1 < size; ++1) { std::cout << host_data[i] << ' '; }

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

alpaka/04 views.cc

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, 0Ou);

std::cout << "Host: << alpaka::getName(host) << '\n';
// initialise the accelerator platform
Platform platform;

// allocate a buffer of floats in mapped host memory
uint32 t size = 42;
[std ::vector<float> host_data(size)qu,,,,,,h,

for (uint32 t 1 = 0; 1 < size; ++1) { ;{///
host_data[i] = 1;

std::cout << "host vector at " << std::data(hog¥:d§5ii << "\n\n";
// fill the host buffers with values —

// allocate a buffer of floats in global device memory, asynchronously
auto device_ buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);
std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device buffer, 0x00);

// create a read-only view to the device data

auto const_view = alpaka::ViewConst(device buffer);

// copy the contents of the device buffer to the host buffer
Jffﬂlpakaﬁﬂemcpy(const_view);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

} use a vector directly as an alpaka Vi

}

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);
std::cout << "Device: " << alpaka::getName(device) << '\n';
// create a work queue

Queue queue{device};

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32 t 1 = 0; 1 < size; ++1) { std::cout << host_data[i] << ' '; }

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

using views

alpaka/04 views.cc

// use the single host device

HostPlatform host_platform;

Host host = alpaka::getDevByIdx(host_platform, 0Ou);
std::cout << "Host: " << alpaka::getName(host) << '\n';
// initialise the accelerator platform

Platform platform;

// allocate a buffer of floats in mapped host memory

uint32_t size = 42;

std::vector<float> host_data(size);

std::cout << "host vector at " << std::data(host_data) << "\n\n";

// fill the host buffers with values

for (uint32 t 1 = 0; 1 < size; ++1) {
host_data[i] = 1;

}

// use the first device
Device device = alpaka::getDevByIdx(platform, Qu);
std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

pass a constant view to the copy
operation to garantee not
changing the device buffer

/
/

’[auto const_view = alpaka: :ViewConst(device_buffer)l;

{
// allocate a buffer of floats in global device memory, asynchronously
auto device_ buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);
std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device buffer, 0x00);
// create a read-only view to the device data

// copy the contents of the device buffer to the host buffer

alpaka: :memcpy(queue, host_data, ;

/] the device buffer goes out of scopgh but the memory is freed only
// once all enqueued operations have dompleted

} /

/
/

// wait for all operations to complet

alpaka::wait(queue);

// read the content of the ho
for (uint32_t 1 = 0; 1 < size; ++1) { std::cout << host_data[i] << ' '; }

_—

A. Bocci - Performance portability with alpaka

1-4 July 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

Aaka device AP]

alpalka device functions:

device functions
* device functions are marked with the ALPAKA_FN_ACC macro

ALPAKA_FN_ACC
float my func(float arg) { .. }

* backend-specific functions

— ifthe implementation of a device function may depend on the backend or on the work division into groups and threads,
it should be templated on the Accelerator type, and take an Accelerator object

template <typename TAcc>
ALPAKA_FN_ACC
float my func(TAcc const& acc, float arg) { .. }

* the availability of C++ features depends on the backend and on the device compiler
— dynamic memory allocation is (partially) supported, but strongly discouraged
~— c++ std containers should be avoid
— exceptions are usually not supported
— recursive functions are supported only by some backends (CUDA: yes, but often inefficient; SYCL: no)
— c¢++20is available in CUDA code only starting from CUDA 12.0, c++23 is not yet available
W iiNetc.

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

examples:

* mathematical operations are similar to what is available in the c++ standard:
Sy P E0
alpaka::math::sin(acc, arg)
* atomic operations are similar to what is available in CUDA and HIP
el
alpaka::atomicAdd(acc, T* address, T value, alpaka::hierarchy::Blocks)
* warp-level functions are similar to what is available in CUDA and HIP

- egq
alpaka::warp::ballot(acc, arg)

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

alpaka kernels

kernels

* areimplemented as an ALPAKA_FN_ACC void operator()(..) const function
of a dedicated struct or class

- kernels never return anything: -> void
- kernels cannot change any data member on the host: must be declared const

« are always templated on the accelerator type, and take an accelerator object as the first argument

struct Kernel {
template <typename TAcc>
ALPAKA_FN_ACC void operator()(
TAcc const& acc,
float const* in1, float const* in2, float* out, size t size) const

{

}
s

* the TAcc acc argumentidentifies the back-end and provides the dimensionality and the work division

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* alpaka maintains the work division into blocks and threads used in CUDA, HIP and OpenCL:

* akernellaunch is divided into a grid of blocks
- thevarious block are scheduled independently, so they may be running concurrently or at different times

- operations in different blocks cannot be synchronised
- operations in different blocks can communicate only through the device global memory
* each block is composed of threads running in parallel
- threadsin a block tend to run concurrently, but may diverge or be scheduled independently from each other
- operationsin a block can be synchronised, e.g. with alpaka: :syncBlockThreads(acc);
- operationsin a block can communicate through shared memory
* blocks can be decomposed into sub-groups, i.e. warps or wavefronts

- threads in the same warp can synchronise and exchange data using more efficient primitives

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* to support efficient algorithms running on a CPU, alpaka introduces an additional level in
the execution hierarchy: elements

* each thread in a block may process multiple consecutive elements

* CPU backends usually run with multiple elements per thread
- agood choice might be 16 elements, so 16 consecutive integers or floats can be loaded into a cache line
- the goalis allow a host compiler to auto-vectorise the code, but more research and development is needed !
* GPU backends usually run with a single element per thread
- memory accesses are already coalesced at the warp level, but more writes per thread may improve the bandwidth
- 2 elements per thread could be used with short or float16 data

* kernel should be written to allow for different number of elements per thread

 acommon approach is to use
- Nblocks, M threads per block, 1 element per thread on a GPU
- Nblocks, 1 thread per block, M elements per thread on a CPU

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

a simple strided loop. %

* alpaka provides helper to implement a N-dimensional strided loops
* the launch grid is tiled and repeated as many times as needed to cover the problem size
* thisis usually an efficient approach when all threads can work independently

struct Kernel {

template <typename TAcc>
ALPAKA FN_ACC void operator()(

TAcc const& acc,

float const* in1l, float const* in2, float* out, size t size) const
{

for (auto index : alpaka::uniformElements(acc, size)) {

out[index] = in1[index] + in2[index];

}
5

* also available for N-dimensional loops
for (auto ndindex : alpaka::uniformElementsND(acc, {z,y,x})) { ... }

* split across different dimensions, for non-uniform blocks, etc.

* for more complicated cases, use the alpaka: :getWorkDiv and alpaka: :getIdx
functions

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

launching kernels

Accelerator

* describes “how"” a kernel runs on a device
- N-dimensional work division (1D, 2D, 3D, ...)
- onthe CPU, serial vs parallel execution at the thread and block level (single thread, multi-threads, TBB tasks, ...)

- implementation of shared memory, atomic operations, etc.

the Accelerator c++ type is available only when alpaka is being compiled for a specific back-end

- the accelerator type can be used to specialise code and implement per-accelerator behaviour

- for example, an algorithm can be implemented in device code using a parallel approach for
a GPU-based accelerator, and a serial approach for a CPU-based accelerator

accelerator objects are created when a kernel is executed, and can only be accessed in device code
- each device function can (should) be templated on the accelerator type, and take an accelerator as its first argument
- the accelerator object can be used to extract the execution configuration (blocks, threads, elements)

Tag

identifies an Accelerator back-end, without the hardware and work division details
- e.g. TagCpuSerial, TagGpuCudaRt, TagGpuHipRt, ...
unlike the Accelerator, the Tag C++ type is always available

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* akernel launch requires
* the type of the accelerator where the kernel will run

* the queue to submit the work to

* the work division into blocks, threads, and elements
* aninstance of the type that implements the kernel
* the arguments to the kernel function

* we provide some helper types and functions
 config.hincludesthe aliases Acc1D, Acc2D, Acc3D for 1D, 2D and 3D kernels

* WorkDiv.hpp provides the helper function makeWorkDiv<TAcc>(blocks, threads_or_elements)
- taken from Alpaka tests

// launch a 1-dimensional kernel with 32 groups of 32 threads (GPU) or
elements (CPU)

auto grid = makeWorkDiv<Acc1D>(32, 32);

alpaka: :exec<Acc1D>(queue, grid, Kernel{}, a.data(), b.data(), sum.data(),

size);
1-4 July 2073

https://creativecommons.org/licenses/by-sa/4.0/

a complete alpaka example

o)) a complete alf

* running on the CPU

$./05 kernel _cpu

Host: Intel Xeon Processor (Cascadelake)

Device:

alpaka/05 kernel.cc

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...

success

* running on the GPU

$./05 _kernel cuda

Host: Intel Xeon Processor (Cascadelake)

Device:

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...

success

1-4 July 2025

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc

D) amuitidimensional apsakm exampl

) alpaka/06_kernelnd.cc
* running on the CPU

$./06_kernelnd cpu

Host: Intel Xeon Processor (Cascadelake)

Device:

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (1) threads x (32) elements...
success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4)
elements...

success

* running on the GPU

$./06_kernelnd_cuda

Host: Intel Xeon Processor (Cascadelake)

Device:

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...

success

1-4 July 2025 A. Bocci - Performance portability with alpaka 82 /97

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/06_kernelnd.cc

alpalka on different back-ends

» parallel CPU back-end, using POSIX threads

S make 06_kernelnd mt
g++ -std=c++20 -02 -g -I /include -DALPAKA HAS STD_ATOMIC_REF -pthread
-D 06_kernelnd.cc -o 06_kernelnd mt

$./06_kernelnd mt

Host: Intel Xeon Processor (Cascadelake)

Device:

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...

success

1-4 July 2025 A. Bocci - Performance portability with alpaka 84 /97

https://creativecommons.org/licenses/by-sa/4.0/

» parallel CPU back-end, using the Intel Threading Building Blocks library

S make 06_kernelnd_tbb

g++ -std=c++20 -02 -g -I /include -DALPAKA HAS STD_ATOMIC_REF -pthread
-I/opt/miniforge3/include -D 06_kernelnd.cc
-L/opt/miniforge3/lib -1tbb -0 06 _kernelnd tbb

$./06_kernelnd _tbb

Host: Intel Xeon Processor (Cascadelake)

Device:

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (1) threads x (32) elements...
success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4)
elements...

success

1-4 July 2025 A. Bocci - Performance portability with alpaka 85/97

https://creativecommons.org/licenses/by-sa/4.0/

* AMD GPUs, using the HIP/ROCm runtime back-end

$ hipcc -std=c++20 -02 -g -pthread \
-1 /include -D
06_kernelnd.cc \
-0 06_kernelnd_hip

$./06_kernelnd_hip

Host: AMD EPYC 7A53 64-Core Processor

Device:

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...

success

Alpaka on the LUMI supercomputer !

1-4 July 2025 A. Bocci - Performance portability with alpaka 86 /97

https://creativecommons.org/licenses/by-sa/4.0/

Intel GPUs, using the oneAPI back-end

$ icpx -fsycl -std=c++20 -02 -g -pthread \
-1 /include -D
06_kernelnd.cc \
-0 06_kernelnd_sycl

$./06_kernelnd sycl

Host: Intel(R) Xeon(R) Platinum 8480+

Device:

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...

success

Alpaka on the Aurora supercomputer ?

1-4 July 2025 A. Bocci - Performance portability with alpaka 87 /97

https://creativecommons.org/licenses/by-sa/4.0/

alpalka with mdspan

§

-

) alpaka/07_mdspan.cc
* running on the CPU

./07_mdspan_cpu
Host: Intel Xeon Processor (Cascadelake)
Device:
Testing VectorAddKernelMD with mdspan accessors with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4)
elements...
success

akca with ndspan:

* running on the GPU

$./07_mdspan_cuda

Host: Intel Xeon Processor (Cascadelake)

Device:

Testing VectorAddKernelMD with mdspan accessors with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1)
elements...

success

1-4 July 2025 A. Bocci - Performance portability with alpaka 89 /97

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/07_mdspan.cc

a single alpaka application For multiple back-ends

a single application for multiple

 overall structure
* config.h

defines different namespaces for each back-end

 backend.h

provides a simple interface to the code in backend.cc

* backend.cc

query the devices and accelerators
declares the code in a different namespace for each back-end
built N times as shared libraries, once for each back-end (CPU serial, CUDA, HIP, etc.)

* main.cc

1-4 July 2025

query the host part
links to the back-ends’ shared libraries
call each back-end’s implementation

enumerate/

Makefile
backend.cc
backend.h
config.h

A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/enumerate/

C

&) asingle application for multiple back-

S ./enumerate
Host platform: alpaka::PlatformCpu
Found 1 device:

- Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
- Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
- Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
- Intel Xeon Processor (Cascadelake)

Accelerator platform: alpaka::PlatformUniformCudaHipRt<alpaka::ApiCudaRt>
Found 1 device(s):
- Tesla V100-SXM2-32GB

1-4 July 2025 A. Bocci - Performance portability with alpaka 92 /97

https://creativecommons.org/licenses/by-sa/4.0/

C

=) asingle application for multiple back:

S ./enumerate -v

Accelerator platform: alpaka::PlatformUniformCudaHipRt<alpaka: :ApiCudaRt>
Found 1 device(s):
- Tesla V100-SXM2-32GB
- Accelerator name: alpaka::AccGpuUniformCudaHipRt<alpaka::ApiCudaRt,
std::integral_constant<long unsigned int, 3>, unsigned int>
number of multi-processors: 80
global memory free / total (bytes): 33748942848 | 34072559616
shared memory per block (bytes): 49152
max blocks per grid (z, vy, X): (65535, 65535, 2147483647)
max threads per block (z, vy, X): (64, 1024, 1024)
max elements per thread (z, vy, X): (4294967295, 4294967295, 4294967295)
max number of blocks per grid: 4294967295
max number of threads per block: 1024
max number of elements per thread: 4294967295
supported warp sizes: { 32 }
preferred warp size: 32

1-4 July 2025 A. Bocci - Performance portability with alpaka 93 /97

https://creativecommons.org/licenses/by-sa/4.0/

summary

summary

e during this tutorial we learned
* what performance portability means and discovered the Alpaka library
* how to set up Alpaka for a simple project
* how to compile a single source file for different back-ends
* what are alpaka platforms, devices, queues and events
* how to work with host and device memory
* how to write device functions and kernels
* how to use an Alpaka accelerator and work division to launch a kernel
 and worked up to a few complete examples

e congratulations!
* now you can write portable and performant applications

1-4 July 2025 A. Bocci - Performance portability with alpaka

https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

CERN

Copyright CERN 2025
Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

