

Istituto Nazionale di Fisica Nucleare

²²²Rn progeny NR events from the cathode: towards z fiducialization in NR events G. Dho, S. Piacentini

Analysis Meeting

10 / 04 / 2025

To Rn or not to Rn

Data samples produced by Daniel


```
df_central = df[
((df["sc_xmean"]>375) & (df["sc_xmean"]<1970))
&((df["sc_ymean"]>225) & (df["sc_ymean"]<2110))
&(df["sc_rms"] > 6)
&(df["sc_tgausssigma"]*0.152>0.5)
].copy()
```


To Rn or not to Rn

Runs 19909 - 20415 | CENTRAL + QUALITY


```
df_central = df[
((df["sc_xmean"]>375) & (df["sc_xmean"]<1970))
&((df["sc_ymean"]>225) & (df["sc_ymean"]<2110))
&(df["sc_rms"] > 6)
&(df["sc_tgausssigma"]*0.152>0.5)
].copy()
```


Runs 40919 - 42848 | CENTRAL + QUALITY

To Rn or not to Rn

Some notes:

- They have a large energy distribution up to $\sim 22 \text{ keV}_{\text{Fe}-\text{e}}$
- They seem not to pertain to the ER band: why are they not falling on the MIP band with increasing energy?
- What kind of tracks are they?

```
df_central = df[
 ((df["sc_xmean"]>375) & (df["sc_xmean"]<1970))
&((df["sc_ymean"]>225) & (df["sc_ymean"]<2110))
&(df["sc_rms"] > 6)
&(df["sc_tgausssigma"]*0.152>0.5)
].copy()
```


Runs 40919 - 42848 | CENTRAL + QUALITY

First step: select them

```
df_central2 = df[
((df["sc_xmean"]>375) & (df["sc_xmean"]<1970))
&((df["sc_ymean"]>225) & (df["sc_ymean"]<2110))
&(df["sc_rms"] > 6)
&(df["sc_tgausssigma"]*0.152>0.5)
&(df["sc_integral_corr"]>19_000)
&(df["sc_integral"]/df["sc_nhits"] > 0.0005 * df["sc_integral_corr"] + 5)
&(df["sc_integral"]/df["sc_nhits"] < 0.0005 * df["sc_integral_corr"] + 12)</pre>
].copy()
```


Second step: 2D spatial distribution

Second step: 2D spatial distribution (isotropic)

events at the top and less at the bottom!

Second step: z spatial distribution

Third step: let's look at them

Third step: let's look at them

And they are short in time!

Interpretation: ²²²Rn alpha decays

Interpretation: ²²²Rn alpha decays

Cathode

α track inside the cathode

O(100 keV_{nr}) 210 Pb recoil

Interpretation: MIMAC (and DRIFT) already found this

First detection of radon progeny recoil tracks by MIMAC

Q. Riffard, D. Santos, O. Guillaudin, G. Bosson, O. Bourrion, J. Bouvier, T. Descombes, C. Fourel,

J.-F. Muraz, L. Lebreton - Show full author list

Published 30 June 2017 • © 2017 IOP Publishing Ltd and Sissa Medialab

Journal of Instrumentation, Volume 12, June 2017

Citation Q. Riffard et al 2017 JINST 12 P06021

DOI 10.1088/1748-0221/12/06/P06021

Parent	<i>T</i> _{1/2}	Mode	$E^{\mathrm{kin}}_{lpha/eta\mathrm{max}}$	Daughter	$E_{\rm recoil}^{\rm kin}$	$E_{\rm recoil}^{\rm ioni}$
			[MeV]		[keV]	[keVee]
From ²²² Rn						
²²² Rn	3.8 days	α	5.489	²¹⁸ Po	100.8	38.23
²¹⁸ Po	3.1 min	α	6.002	²¹⁴ Pb	112.3	43.90
²¹⁴ Pb	27 min	β-	1.024	²¹⁴ Bi	-	-
²¹⁴ Bi	20 min	β^-	3.272	²¹⁴ Po	_	-
²¹⁴ Po	164 µs	α	7.687	²¹⁰ Pb	146.5	58.78
²¹⁰ Pb	22 years	β^-	0.064	²¹⁰ Bi	_	-
²¹⁰ Bi	5 days	β^{-}	1.163	²¹⁰ Po	-	_
²¹⁰ Po	138 days	α	5.304	²⁰⁶ Pb (stable)	103.7	40.28

DRIFT paper: <u>https://doi.org/10.1016/j.nima.2007.10.013</u>

MIMAC paper: 10.1088/1748-0221/12/06/P06021

If we consider an O(10-20%) QF for Pb nuclear recoils in He:CF₄ at atmospheric pressure

We should observe \sim 15 - 20 keV $_{Fe-e}$ nuclear recoils at high Z!

Conclusions

- We have a strong suggestion that ²²²Rn alpha decays come along with short NR-like spotlike deposits at high z
- The energy and density of these deposits can harldy be interpreted as ERs
- These events are the same populating the ~ 20 keV_{Fe-e} peak in Daniel's spectra lacksquare
- An interpretation explaining the entire scheme: NR from alpha decays of Rn progeny accumulated on the cathode surface! (already observed by MIMAC and DRIFT)
- <u>A more in-depth and systematic work is needed!</u>
- If this is the case:
 - we demonstrated that we can fiducialize low energy NRs in z!!!
 - we have another <u>strong signature of Rn presence in LIME</u>
 - we should compare these NRs with the AmBe NRs induced on He!