Silicon Drift Detectors for the new generation of Kaonic Atoms measurements

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

INFN

FRANCESCO CLOZZA Workshop on Fundamental Physics with Exotic Atoms 2025

Physics of light kaonic atoms

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

 $n \sim \sqrt{\frac{\mu}{m_e}} n_e$

$n \sim 28 \, \text{K-}^4 \text{He} \, \& \, \text{K-D}$ *n* ∼ 25 K-H μ system's reduced mass

The SIDDHARTA-2 Silicon Drift Detectors

- SDD cells: 8x8mm² active area
- 450 μ m thick silicon bulk: > 85% detection efficiency for 5-12 keV Xrays (region of interest for kaonic deuterium)
- SDD cells packed in 2x4 array (total) active area of 5.12 cm^2)
- Extremely good linear behaviour and energy resolution in the range of interest
- $\Delta E/E < 10^{-3}$
- FWHM ~ 170 eV @6.4 keV

The SIDDHARTA-2 Silicon Drift Detectors

- e-h pairs separated through a reverse polarisation field ("vertical drift")
- Second electric field superposed to transport the charges towards a collection anode ("horizontal drift")
- "Gutter-like" field configuration is achieved for the charge collection

Beyond SIDDHARTA-2: EXKALIBUR

1.1 - High precision kaonic neon measurement To extract the charged kaon mass with a precision of about 5 keV

BSQED and Physics beyond Schwinger limit

1.2 - Light kaonic atoms (LHKA)

- solid target Li, Be, B

- integration of 1mm SDD

EXKALIBUR

C. Curceanu et al., Front.in Phys. 11 (2023) 1240250

EXtensive Kaonic Atoms research: from L/thium and Beryllium to **UR**anium

Intermediate kaonic atoms (IMKA) In parallel we plan dedicated runs for kaonic atoms (O, Al, S) with CdZnTe detectors - 200 - 300 pb⁻¹ of integrated luminosity/target

- Minimal modifications/adding to SIDDHARTA-2
- New calibration system (0.2 eV accuracy)
- New 1mm thick SDDs

New 1mm Silicon Drift Detectors

- Thicker silicon bulk will allow for a much better efficiency at higher **energy** (above 15 keV)
- Possibility to extend the range of kaonic atoms that we are able to measure
- Insight into the $K^- NN$ strong interaction

Lithium-6			Lithium-7		Beryllium-9		
Transition Energy (keV)		Transition	Energy (keV)	Transition	Energy (keV)		
	3 ightarrow 2	15.085		${f 3} ightarrow {f 2}$	15.261	3 ightarrow 2	27.560
	${f 4} ightarrow {f 2}$	20.365		${f 4} ightarrow {f 2}$	20.603	4 ightarrow 3	9.646
	${f 5} o {f 2}$	22.809		${f 5} o {f 2}$	23.075	5 ightarrow 3	14.111
	$4 \rightarrow 3$	5.280		$4 \rightarrow 3$	5.341	$5 \rightarrow 4$	4.465
	5 ightarrow 3	7.724		5 ightarrow 3	7.814	$6 \rightarrow 4$	6.890
	$5 \rightarrow 4$	2.444		$5 \rightarrow 4$	2.472	$6 \rightarrow 5$	2.425
	$6 \rightarrow 4$	3.771		$6 \rightarrow 4$	3.815		

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

New 1mm Silicon Drift Detectors

- Characterisation ongoing in the laboratory
- Energy resolution at different bias voltages
 - Ring1 (innermost ring)
 - RingN (outermost ring)
 - Back (depletion voltage)
 - Focusing Electrode
- FE characterisation to optimise the quality of charge collection
- In particular, it minimises charge sharing between adjacent SDDs

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

1mm SDDs characterization: energy resolution vs R1

- Optimisation of the energy resolution at 6.4 keV (FeK_{α} line) as a function of the R1 bias voltage
- Energy resolution is stable within 1 eV when 26 V \leq [R1] \leq 30 V

1mm SDDs characterization: energy resolution vs RNBC

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

- function of the Back and RN
- ~[-103V, -80V]x[-73.5V, -67V]
- massive effect on the energy

- Optimisation of the energy resolution and Tail component as function of the FE bias voltage
- Due to incomplete charge collection and e-h recombination

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

Response of the SDDs vs FE bias voltage scanned at different energies

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

Silicon Drift Detectors

Ti - Fe - Cu - Br - Zr Rotating multitarget

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

Smaller tail contribution response of the SDDs at higher FE bias voltages

• Optimal working point at

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements --- Francesco Clozza

1mm SDDs characterization: optimal configuration

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

EXKALIBUR proof of concept: KB and KF

1.1 - High precision kaonic neon measurement To extract the charged kaon mass with a precision of about 5 keV

BSQED and Physics beyond Schwinger limit

1.2 - Light kaonic atoms (LHKA) - solid target Li, Be, B - integration of 1mm SDD

EXKALIBUR

C. Curceanu et al., Front.in Phys. 11 (2023) 1240250

EXtensive Kaonic Atoms research: from L/thium and Beryllium to **UR**anium

Intermediate kaonic atoms (IMKA) In parallel we plan dedicated runs for kaonic atoms (O, Al, S) with CdZnTe detectors - 200 - 300 pb⁻¹ of integrated luminosity/target

- First attempt to measure X-ray transitions from solid targets with the 450 µm SDDs
- Data taking performed with a solid B and teflon (C_2F_4) target
- Explorative measurements of Kaonic Boron and Kaonic Fluorine X-ray transitions

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

EXKALIBUR proof of concept: Kaonic Boron

- First attempt to measure X-ray transitions at 50 keV with the 450 µm SDDs
- Characterisation performed to assess the performance of SDDs in the 10-50 keV energy range

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

• Goodness of the calibration tested at 50 keV by measuringTmK_{α} X-ray transitions

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

EXKALIBUR proof of concept: Kaonic Fluorine

Strong Field QED with Kaonic Fluorine

• Bohr radius in exotic (kaonic) atoms is much smaller

$$a_0 = \frac{\hbar}{\mu c \alpha} \ll \frac{\hbar}{m_e c \alpha}$$

- The electric field between the kaon and the nucleus is $O(10^5)$ greater than that of "normal" atoms
- Study of QED under strong field
- Exotic atoms enable experimental access to Strong Electric Field [Paul et al., PRL 126, 173001 (2021)]

Strong Field QED with Kaonic Fluorine

• The Schwinger Limit for spontaneous e^-e^+ pair creation is:

$$E_c = rac{m_e^2 c^3}{q_e \hbar} pprox 1.32 imes 10^{18} V/m ~~ \langle E
angle_{nl} = \int d^3 r ~ |\psi_{nl}({f r})|^2 E({f r})$$

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

(\mathbf{r})

	SIDDHARTA-2		
	—— Data		
l [eV]	—— Global Fit function		
+- 5 5(svst)	KF transitions		
+- 0.0(3931)	Contaminants transitions		
+- 30(syst)	Background		
⊾- 23(svst)	$\int Ldx = 22.4 \text{pb}^{-1}$		
- 20(0931)	$\chi^2/ndf = 1.17$		

- EXKALIBUR will measure higher mass kaonic atoms
- To extend the range of measurable kaonic atoms, new 1mm thick SDDs are being developed and characterised
- The first tests highlight an excellent linearity ($\Delta E/E \sim O(10^{-4})$) and energy resolution (FWHM $\sim 150 \text{ eV} @ 6.4 \text{ keV}$)
- The results of the feasibility tests with 450 µm SDDs are very promising
- 50 keV transition line of Kaonic Fluorine ($4 \rightarrow 3$) has been measured together with X-rays transitions of Kaonic Boron ($5 \rightarrow 4$ and $4 \rightarrow 3$)

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

Thank you for your attention

FRANCESCO CLOZZA Workshop on Fundamental Physics with Exotic Atoms 2025 stituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

BACKUP

1mm SDDs characterization: linearity

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements --- Francesco Clozza

1mm SDDs characterization: energy resolution

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements --- Francesco Clozza

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements --- Francesco Clozza

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements --- Francesco Clozza

1mm SDDs characterization: optimal configuration

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

Physics of light kaonic atoms

- Detected X-Rays carry information about the (strong) interaction
- Broadening ([) and shift ($\boldsymbol{\varepsilon}$) of the energy level induced by the strong interaction
- Scientific goal: performing the first measurement of kaonic deuterium X-ray transition to the fundamental level to extract \mathcal{E}_{1s} and Γ_{1s}

• Antikaon-nucleon scattering lengths $(a_{\bar{K}N})$ related to these observables

$$\varepsilon_{1s}^{H} + \frac{i}{2}\Gamma_{1s}^{H} = 2\alpha^{3}\mu^{2}a_{\bar{K}p} \left[1 - 2\alpha\mu(\ln\alpha - 1)a_{\bar{K}p} + \dots\right]$$

fine structure constant reduced mass
$$\lim_{h \to 0} \sigma_{e} = 4\pi a^{2}$$

elastic cross section

- Combined analysis of kaonic hydrogen and kaonic deuterium to extract the isospin-dependent antikaon-nucleon scattering lengths
- Kaonic hydrogen measured by the SIDDHARTA experiment in 2009
- Lack of a kaonic deuterium measurement

Meißner, U.-G., Raha, U. & Rusetsky, A. Spectrum and decays of kaonic hydrogen. The European Physical Journal C-Particles and Fields 35. 349–357 (2004).

Physics of light kaonic atoms

- Theoretical models in good agreement K^-p low momentum scattering amplitude
- Theoretical models for the K^-n low momentum scattering amplitude highly spread

Óbertová, J., Friedman, E., Mareš, J. & Ramos, À. On Knuclear interaction, K-nuclear quasibound states and Katoms. In EPJ Web of Conferences, vol. 271, 07003 (EDP Sciences, 2022).

The DAΦNE Collider of INFN-LNF

- SIDDHARTA-2 experiment installed on the Interaction Point (IP) of $DA\Phi NE$
- e^+e^- collider working at a center of mass energy of the ϕ meson mass (1.02 GeV/c^2)
- Decay to K^+K^- pairs with a BR of 48.9%
- Kaon momentum 127MeV/c
- Not (much) relativistic $\beta \sim 0.25$, $\beta \gamma \sim 0.26$

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

The SIDDHARTA-2 apparatus

- Cylindrical vacuum chamber
- Cryogenic target cell
- Kaon trigger
- 384 X-Ray detectors (SDDs)
- Mylar degrader
- Luminosity monitor
- Veto Systems

The SIDDHARTA-2 apparatus: cryogenic target

- Cylindrical volume (144mm diameter x 125mm height)
- Side walls made of two layers of 75µm kapton ($C_{22}H_{10}N_2O_5$)
- Thermal and Mechanical properties of kapton are suitable for cryogenic operations
- Reinforcement structure of high purity aluminum
- 125µm thick kapton entrance window
- Dedicated holder for calibration target
- Gaseous target
- Target cell kept between 20-30K with a closed-cycle helium refrigeration system

Silicon Drift Detectors for the new generation of Kaonic Atoms measurements — Francesco Clozza

