Kaonic atom experiments at J-PARC

Tadashi Hashimoto (RIKEN PRI/RNC) for the J-PARC E62/E57 collaboration

Workshop on Fundamental Physics with Exotic Atoms, Frascati, Italy, June 23–25, 2025.

J-PARC E62 Kaonic ³He/⁴He 3d→2p with **TES**

J-PARC E57 Kaonic Deuterium $2p \rightarrow 1s$

with **SDDs**

lead by J. Zmeskal

$\mathbf{H}_{\mathbf{M}}$

2017 @KEK

2018@J-PARC

2018 after E62

History

Year	E62	E57
2006	E17 proposal (1 st PAC)	

• • •

2014	TES demonstration @ PSI	E57 proposal (18 th PAC)		
		undeted in research (20th DAC)		
2015	E62 proposal (2011 PAC)	updated proposal (2011 PAC)		
	→ stage-2 approval	→stage-1 approval		
2016	Commissioning of K1 ODD			
0017				
2017				
2010				
2018	K-He Physics run SDD commissioning			
2019		K-H (+K-He) commissioning		
2020 Switch to lifetime measurement of hypernuclei…				

K meson in nuclei

A series of experiments at J-PARC K1.8BR, probing different energy, density, and isospin

K-atom experiments @ J-PARC K1.8BR

		K-d (E57)	K- ^{3/4} He (E62)
X-ray transition		2p → 1s	3d → 2p
	Energy	~ 8 keV	~ 6 keV
	Width	~ 1000 eV	~ 2 eV
	Yield (per stopped K-)	~ 0.1 % (0.04% of liquid D2 density)	~ 7 % (Liquid He)
X-ray detector		SDD	TES
	FWHM resolution	~ 150 eV	~ 5 eV
	Effective area	~ 200 cm ²	~ 0.2 cm ²
Physics		K ^{bar} N (I=1)	K ^{bar} -nucleus potential

HIGN SENSITIVITY rign resolution

J-PARC Japan Proton Accelerator Research Complex

World's highest intensity proton driver \rightarrow high-intensity secondary K/µ beam

K1.8BR in HEF

T1 target

K1.8BR

K1.8BR suitable for low-energy K- beam below 1 GeV/c

DAΦNE vs. J-PARC

DA¢NE

J-PARC

K ⁻ @ 0.7 GeV/c Δp/p ~ 3%			
104 v - 1			

$$\sim 10^4 K^-$$
 /spill

K-@ 0.9 GeV/c ∼ 10⁵ K⁻ /spill

+ >10x pions

Stop K-optimization

- stopping efficiency is typically ~10⁻⁴

• The higher the momentum, the more kaons and the less stopping

K-p/K-d 2p-1s (E57) First test run was performed in Mar./Apr. 2019

new technology for SDD detectors

Solenoid

Cylindrical drift chamber

Cylindrical detector hodoscope

Target at 30K&3 bar, SDD down to 100K for better timing resolution
 Vertex cut & charged particle veto by using CDC

SDDs

J-PARC E5 inal strategy (CDS)

SDD
 amplifier
 boards

E57 test setup in 2019

✓ Hydrogen target is operated with the required safety measures.
 ✓ 30 SDD units installed. ~150 ch in 26 units worked.

SDD Readout for J-PARC E57/E62

~1m flat cable twisted shielded

50m flat cable to CAEN V785 PADC

Vertex reconstruction (BPC&CDC)

XY

-6(

-80

-60<Z<60

Target cell & SDDs

Charged particle VETO on SDDs using CDC

MIP traversing SDD at some distance from the edge \rightarrow large signal > 150 keV

MIP traversing SDD at the edge of the active area \rightarrow small signal

electron from secondary produced near the SDD

X-ray or electron from secondary produced in the setup

Correlation between the CDC charged track and the SDD position was clearly observed → We can remove charged particle events on SDDs

Helium data in E57 Counts / 80 eV C

Almost all background are rejected with a reasonable signal loss

~6 hour data taking **Kaonic Helium** without CDS with CDS analysis Energy (keV)

Results of E57 test run in 2019

He target: ~6 hours

✓ almost background free as designed

H₂ target: ~4 days

 \checkmark Higher transitions are observed.

- x no clear K α peak
- x Low yields

Meanwhile, SIDDHARTA2 started data taking

V Drastic background reduction by detecting K and L X-rays in coincidence

- L X-rays yield ~ 10% at most
- S/N at K α can be improved at least by factor 10 . L X-ray measurement alone gives additional information (Γ_{2p} , cascade …)

SDDs inside the target gas

typical X-ray window materials absorb all L X-rays…

We have already succeeded in operating SDDs in a hydrogen (<10bar, 135K) We started the discussion for new development of the active target cell

- 59%→93% solid angle for the secondary particles

Need to extend the horizontal part of the target&SDD system

Gain factors

1000 events / 1 month beamtime is feasible for 0.1% X-ray yield

2019 estimation by Tadashi

		gain	upgrade	esent
		2.00	2.0	1.0
		1.50	1.5	1.0
		1.96	1225.0	25.0
	h	1.56	250.0	60.0
aambinad		0.50	2.0	4.0
rough estir		1.60	80.0	50.0
1.9		1.25	4.0	3.2
this M		1.43	1.0	0.7
<u>1.4 ~ 2</u>		1.25	1.0	0.8
with 20 beam pro		16.41		
I				

put CdZnTe detectors surrounding the degrader

• Kaonic C, S, Al, …

K-3/4He X-rays with TES

PHYSICAL REVIEW LETTERS 128, 112503 (2022)

Measurements of Strong-Interaction Effects in Kaonic-Helium Isotopes at Sub-eV **Precision with X-Ray Microcalorimeters**

T. Hashimoto,^{1,2,*} S. Aikawa,³ T. Akaishi,⁴ H. Asano,² M. Bazzi,⁵ D. A. Bennett,⁶ M. Berger,⁷ D. Bosnar,⁸ A. D. Butt,⁹ C. Curceanu,⁵ W. B. Doriese,⁶ M. S. Durkin,⁶ Y. Ezoe,¹⁰ J. W. Fowler,⁶ H. Fujioka,³ J. D. Gard,⁶ C. Guaraldo,⁵ F. P. Gustafsson,⁷ C. Han,² R. Hayakawa,¹⁰ R. S. Hayano,¹¹ T. Hayashi,¹² J. P. Hays-Wehle,⁶ G. C. Hilton,⁶ T. Hiraiwa,¹³ M. Hiromoto,⁴ Y. Ichinohe,¹⁴ M. Iio,¹⁵ Y. Iizawa,³ M. Iliescu,⁵ S. Ishimoto,¹⁵ Y. Ishisaki,¹⁰ K. Itahashi,² M. Iwasaki,² Y. Ma,² T. Murakami,¹¹ R. Nagatomi,⁴ T. Nishi,¹⁶ H. Noda,¹⁷ H. Noumi,¹³ K. Nunomura,¹⁰ G. C. O'Neil,⁶ T. Ohashi,¹⁰ H. Ohnishi,¹⁸ S. Okada,^{19,2,†} H. Outa,² K. Piscicchia,⁵ C. D. Reintsema,⁶ Y. Sada,¹⁸ F. Sakuma,² M. Sato,¹⁵ D. R. Schmidt,⁶ A. Scordo,⁵ M. Sekimoto,¹⁵ H. Shi,⁷ K. Shirotori,¹³ D. Sirghi,⁵ F. Sirghi,⁵ K. Suzuki,⁷ D. S. Swetz,⁶ A. Takamine,² K. Tanida,¹ H. Tatsuno,¹⁰ C. Trippl,⁷ J. Uhlig,²⁰ J. N. Ullom,⁶ S. Yamada,¹⁴ T. Yamaga,² T. Yamazaki,¹¹ and J. Zmeskal⁷

(J-PARC E62 Collaboration)

Hadoron physicists + TES experts + Astro physicists

"Kaonic helium puzzle"

S. Hirenzaki et al., PRC 61, 055205 (2000) **anomalous shift** < 1 eV shift expected

- Need precision below 1 eV to draw a conclusion

Y. Akaishi, EXA2005 proceedings Possible explanation for the large shift p-wave nuclear state еV $U_{coupl} = 120 \text{ MeV}.$ ³He-K⁻ 10 5 $U_0 \,\mathrm{MeV}$ о²р 300 200 100 4 -5 -10 ⁴He-K⁻ DQ -15

coupled-channel potential

Large shift and width imply the generation of a p-wave nuclear state

Transition-Edge-Sensor microcalorimeters

Excellent energy resolution as an energy dispersive detector Variety of applications dependent on the detector parameters

✓ 1 pixel : <u>300 x 320 um² (~ 0.1 mm²)</u> ✓ Mo-Cu bilayer TES ✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

Φ~1 cm

✓ 240 pixels ✓ 23 mm² eff. area

J-PARC K1.8BR

beam dump

beam sweeping magnet

Liq. H₂/D₂/^{3/4}He target system

K-beam

beam line spectrometer

neutron counter charge veto counter proton counter

E62 setup @J-PARC K1.8BR

Liq. Helium Target Cryostat

~1.5 m

X-ray generator

dE counter & MWDC

Pb shields

TES

system

K- beam

SDD Liq. He system

X-ray tube

4

1 min

Cu degrader

TES (E62) ~6 eV (FWHM) PRL128, 112503 (2022)

SDD (**SIDDHARTA**) ~**150 eV (FWHM**) PLB714(2012)40

Simple potential parameters constrained with the 4 observables well reproduce the global features of the kaonic-atom data

Muonic atoms with TES

Phys. Rev. Lett. 127, 053001 (2021)

Gas Argon target

TES detectors from NIST

	10 keV TES	20 keV TES	50 keV TES	100 keV TES
Saturation energy	10 keV	20 keV	70 keV	150 keV
Readout system	TDM	TDM	microwave	microwave
Absorber thickness (material)	0.965 µm (Au)	4.1 µm (Bi)	1.85 µm (Au) & 20 µm (Bi)	0.5 mm (Sn)
Absorber area	0.34 x 0.34 mm ²	0.320 x 0.305 mm ²	0.73 x 0.73 mm ²	1.3 x 1.3 mm ²
Absorber collimated area	0.28 x 0.28 mm ²	0.305 x 0.290 mm ²	0.67 x 0.67 mm ²	(no collimator)
Number of pixel	192	240	96	96
Total collection area	15.1 mm ²	21.2 mm ²	43.1 mm ²	162 mm ²
ΔE (FWHM)	5 eV @ 6 keV	5 eV @ 6 keV	20 eV @ 40 keV	80 eV @ 100 keV

new since 2024

Preliminary spectra

Preliminary spectra ~ 1 day data-taking for each data set

Precision goal: 1eV for 44 keV line→ Validate QED effect at 1% level

Summary

- - X-ray coincidence measurement
 - Aiming to start from 2027
 - Similar technique can be employed for K-He 1s, Σ atom,...
- - Helium-3/4 2p states to exclude large shifts/widths
 - Kaon mass measurement?
 - Isotope shift? (Li^{6/7} 2p, Na^{20/22} 3d, Ca^{40~48} 4f)
- Many outputs from muonic atom X-rays with TES

Kaonic deuterium X-rays should be confirmed and improved at J-PARC

Successful application of the TES microcalorimeter to kaonic-atom X-rays