

Kaonic Neon Spectroscopy: Testing Bound-State QED, Extracting the Kaon Mass and Probing Beyond Standard Model Physics

Simone Manti

- Kaonic Neon Spectroscopy:
 - Testing Bound-State QED
 - Extracting the Kaon Mass
 - Probing Beyond Standard Model Physics

High Precision X-ray Spectroscopy in KNe

The Kaonic Neon (KNe) spectrum exhibits several transitions with Intense Yields resulting from the Radiative De-Excitation in the X-ray range of the kaonic atom during its Cascade Process.

The MCDFGME code

• We run **MCDF code** for Kaonic Atom Calculations, including Relativistic and QED effects, in collaboration with **Prof. Paul Indelicato (Paris–CNRS)**.

Ab Initio Input

• Ab Initio Approach: based only on Physical Laws and Fundamental Constants.

Z

- Supports Normal, Exotic, or Mixed Atomic Systems.
- Supported Exotic Particles:
 - $\mathbf{K}^{\text{-}}$: Kaons
 - $oldsymbol{\mu}$: Muons
 - π^{-} : Pions
 - $\Sigma^{\text{-}}$: Sigmas
 - $\mathbf{\bar{p}}^{\text{-}}$: Antiprotons
 - $\mathbf{X}^{\text{-}}: \text{Test}$ Particles

MCDF Framework

Screening Effect

Output Quantities

Energy Levels & Transitions

Radiative Transition Probabilities

Auger Decay Rates

QED Self-Energy & Vacuum Polarization

Parameters for Atomic Cascade

High Precision X-ray Spectroscopy in KNe

Dirac-Fock Calculations are employed to determine the transition energies of the spectral peaks. **Nuclear Shifts and Widths** for n>4 are negligible ($\varepsilon_{4f}^{Ne} \approx 0$ $\Gamma_{4f}^{Ne} \approx 0$)

High Precision X-ray Spectroscopy in KNe

Dirac-Fock Calculations are employed to determine the transition energies of the spectral peaks. **Nuclear Shifts and Widths** for n>4 are negligible ($\varepsilon_{4f}^{Ne} \approx 0$ $\Gamma_{4f}^{Ne} \approx 0$)

Calculations to Reveal the Cascade Mechanism in KNe

- Qualitative trends in kaonic X-ray Yields can be explained by the interplay between Radiative and Auger decay rates
 - \rightarrow X-ray emission dominates for n<10
- Quantitative predictions require accurate Cascade Calculations

 \rightarrow Currently in development

$$\Gamma^{R}_{n,l \to n',l\pm 1} = \frac{4\mu Z^{4}}{3} \alpha^{3} \left| R^{n,l}_{n',l\pm 1} \right|^{2} (\Delta E_{if})^{3}$$

$$\Gamma^{A}_{n,l \to n',l\pm 1} = \frac{32}{3} \left(\frac{Z_{e}}{Z} \right)^{2} \frac{\pi}{\mu^{2}} \frac{l}{2l+1} \left| R^{n,l}_{n',l\pm 1} \right|^{2} \frac{y^{2}}{1+y^{2}} \frac{\exp\left[y(4\tan^{-1}y - \pi) \right]}{\sinh(\pi y)}$$

Kaonic Atoms for Bound State QED Studies

Transition	$E_{if}^{(\mathrm{exp.})}$	$\delta E_{if}^{({ m stat.})}$	$\delta E_{if}^{(m sys.)}$	$E_{if}^{({ m calc.})}$	$E^{(m QED)}_{if}$	$E_{if}^{(m QED1)}$	$E^{(m QED2)}_{if}$	$\Delta E_{if}^{(\mathrm{isot.})}$	$\Delta E_{if}^{(ext{screen.})}$	$\Delta E^{(ext{PDG})}_{if}$
91-8k	4206.97	3.43	2.00	4201.45	2.09	2.07	0.02	9.90	-0.38	0.11
8k-7i	6130.57	0.65	1.50	6130.31	5.09	5.05	0.04	14.45	-0.27	0.16
7i-6h	9450.23	0.37	1.50	9450.28	12.66	12.56	0.10	22.28	-0.18	0.24
$6h-5g^{a}$	15673.30	0.52	9.00	15685.39	32.75	32.51	0.24	37.01	-0.11	0.40

- **MCDF Calculations** include transition energies, QED effects, Electron Screening, and Isotopic Shifts (K²⁰Ne,K²²Ne)
- Sub-eV Statistical Uncertainties match the scale of QED corrections (for some even the 2nd QED contribution!)
- $K^{20}Ne 7i \rightarrow 6h$ transition:
 - **Exp:** 9450.23 ± 0.37 (stat) ± 1.50 (syst) eV
 - **Theory:** 9450.28 ± 0.18 (screen) ± 0.21 (pdg) eV

 \rightarrow Useful for validating **BSQED predictions**.

Kaonic Atoms as Probes of Strong Fields QED: Schwinger Limit for KF

- Exotic atoms (like KNe and KF) enable experimental access to Strong Electric Fields [Paul *et al.*, PRL 126, 173001 (2021)]
- The Schwinger Limit for spontaneous e⁺- e⁻ Pair Creation is:

$$E_c = rac{m_e^2 c^3}{q_e \hbar} pprox 1.32 imes 10^{18} V/m \qquad \langle E
angle_{nl} = \int d^3 r \; |\psi_{nl}({f r})|^2 E({f r}) \; ,$$

• The transition KF 4f \rightarrow 3d, E = 50.6 keV, the Average Electric Field in kaonic orbitals approaches Ec

Kaonic Atoms for Bound State QED Studies: Effects of Kaon Mass

Transition	$E_{if}^{(\mathrm{exp.})}$	$\delta E_{if}^{({ m stat.})}$	$\delta E_{if}^{(m sys.)}$	$E_{if}^{({ m calc.})}$	$E^{(m QED)}_{if}$	$E^{(m QED1)}_{if}$	$E^{(m QED2)}_{if}$	$\Delta E_{if}^{(\mathrm{isot.})}$	$\Delta E_{if}^{(ext{screen.})}$	$\Delta E^{(ext{PDG})}_{if}$
91-8k	4206.97	3.43	2.00	4201.45	2.09	2.07	0.02	9.90	-0.38	0.11
8k-7i	6130.57	0.65	1.50	6130.31	5.09	5.05	0.04	14.45	-0.27	0.16
7i-6h	9450.23	0.37	1.50	9450.28	12.66	12.56	0.10	22.28	-0.18	0.24
6h-5g ^a	15673.30	0.52	9.00	15685.39	32.75	32.51	0.24	37.01	-0.11	0.40

• **MCDF Calculations** include transition energies, QED effects, Electron Screening, and Isotopic Shifts (K²⁰Ne,K²²Ne)

• Sub-eV Statistical Uncertainties match the scale of QED corrections (for some even the 2nd QED contribution!)

 Investigate how result are robust against the uncertainty on the Kaon Mass (MK = 469.677 +- 0.013 MeV)

Precision Kaon Mass Determination: Application to KNe

Transition	$E_{if}^{(\mathrm{exp.})}$	$\delta E^{(m stat.)}_{if}$	$\delta E^{(m sys.)}_{if}$	$E_{if}^{({ m calc.})}$	$E_{if}^{(m QED)}$	$E_{if}^{(m QED1)}$	$E_{if}^{(m QED2)}$	$\Delta E_{if}^{(\mathrm{isot.})}$	$\Delta E_{if}^{(m screen.)}$	$\Delta E^{(ext{PDG})}_{if}$
91-8k	4206.97	3.43	2.00	4201.45	2.09	2.07	0.02	9.90	-0.38	0.11
8k-7i	6130.57	0.65	1.50	6130.31	5.09	5.05	0.04	14.45	-0.27	0.16
7i-6h	9450.23	0.37	1.50	9450.28	12.66	12.56	0.10	22.28	-0.18	0.24
6h-5g ^a	15673.30	0.52	9.00	15685.39	32.75	32.51	0.24	37.01	-0.11	0.40

• MCDF calculations are used to iteratively extract the Kaon Mass from measured transitions as in GAL88:

$$M_{K^{-}}^{'} = M_{K^{-}} rac{E^{exp}}{E^{calc}} \hspace{1cm} \delta M_{K^{-}} = M_{K^{-}} rac{\delta E^{exp}}{E^{exp}}$$

Transition	M_{K} -[MeV]	$\delta M_{K^{-}}^{ m stat.} \ [m keV]$	$\delta M^{ m syst.}_{K^{-}} \ [m keV]$	$\delta M_{K^{-}}^{ ext{calc.}} \ ext{[keV]}$
7i-6h 8k-7i	493.674 493.699	$ \begin{array}{c} 19 \\ 52 \end{array} $	78 121	9 21
7i-6h + 8k-7i	493.677	18	66	11

Kaonic Atoms for Physics Beyond the Standard Model (BSM)

Transition	$E_{if}^{(\mathrm{exp.})}$	$\delta E^{(m stat.)}_{if}$	$\delta E_{if}^{(\mathrm{sys.})}$	$E_{if}^{({ m calc.})}$	$E_{if}^{(m QED)}$	$E_{if}^{ m (QED1)}$	$E_{if}^{ m (QED2)}$	$\Delta E_{if}^{(\mathrm{isot.})}$	$\Delta E_{if}^{(ext{screen.})}$	$\Delta E^{(ext{PDG})}_{if}$
91-8k	4206.97	3.43	2.00	4201.45	2.09	2.07	0.02	9.90	-0.38	0.11
8k-7i	6130.57	0.65	1.50	6130.31	5.09	5.05	0.04	14.45	-0.27	0.16
7i-6h	9450.23	0.37	1.50	9450.28	12.66	12.56	0.10	22.28	-0.18	0.24
6h-5g ^a	15673.30	0.52	9.00	15685.39	32.75	32.51	0.24	37.01	-0.11	0.40

• Assume an effect on the Energy of an **Exotic Atom** level:

$$E_n^{\rm th} = \underbrace{E_n^{\rm SM-NPol} + E_n^{\rm NPol}}_{E_n^{\rm SM}} + E_n^X,$$

• With Yukawa Coupling:

$$V_X(\mathbf{r}) = (-1)^s \frac{g_N^X g_H^X}{4\pi} \frac{e^{-m_X r}}{r} \,,$$

$$E_n^X = (-1)^s \frac{g_H^X g_N^X}{4\pi} \frac{1}{r_n} \frac{1}{\left(1 + \frac{m_X r_n}{2n}\right)^{2n}} \equiv g_H^X g_N^X h_n^X,$$

Constrain uds-scalar [arXiv:2502.03537]

Constraining Cascade Parameters with KNe (WIP)

- Models are employed to predict X-ray yields and Electron Populations during the Cascade.
- Cascade Calculations depend on several Parameters:
 - **Initial conditions** of the cascade (n_{init}) Ο
 - Probabilities of **Electron Shell Refilling** (Γ_{refill}) Ο
 - **Nuclear Absorption Widths** (Γ_{3d} and Γ_{4f}) Ο
- **KNe** is the best system for constraining these parameters, thanks to its numerous and accurate transition yields by the SIDDHARTA2 experiment

K-Ne Transition	Yield
9 - 8	(13.72 +/- 1.16)%
8 - 7	(22.79 +/- 0.38)%
10 - 8	(1.00 +/- 0.08)%
7 - 6	(27.74 +/- 0.24)%
10 - 7	(0.38 +/- 0.04)%
6 - 5	(30.84 +/- 0.26)%

Frefill

3d

Connection between Nuclear Models and Experiment with Cascade Calculations (WIP)

- Inputs from Nuclear Models for Nuclear Shift and Widths for Cascade Calculations
- Nuclear Absorption Fractions as function of the Widths

z ~	Width 2p [eV] ∨	Shift 2p [eV] 🗸	E32 [keV] 🛛 🗸	Width 3d [eV] \sim	Shift 3d [eV] 🗸	E43 [keV] 🛛 🗸	Width 4f [eV] \sim	Shift 4f [eV] $ \lor $
7Li	54	-3,2	15,33	0,0081	~0	5,355	~0	~0
8Be	225	-34.8	27,71	0,026	~0	9,677	~0	~0
9Be	247	-36,8	27,71	0,028	~0	9,677	~0	~ <mark>0</mark>
10B	718	-170	43,568	0,146	~0	15,214	~0	~0
11B	757	-179	43,768	0,157	~0	15,284	~0	~0
12C	1723	-542	63,305	0,618	~0	22,105	~0	~0
14N	3906	-1028	86,731	2,8	~0	30,285	~0	~0
160	7030	-3493	113,831	8,3	-0,39	39,755	0,0017	~0
17F	11249	-6534	144,759	22	-2	50,592	0,0065	~0
20Ne	17703	-11949	178,887	55	-5.7	62,568	0,0194	~0

Nuclear Shifts and Widths Calculations from:

Óbertová, J., Friedman, E., Mareš, J., 2022. First application of a microscopic K⁻NN absorption model in calculations of kaonic atoms. Phys. Rev. C 106, 065201. https://doi.org/10.1103/PhysRevC.106.065201

Conclusion

+

- Comparison Experimental Transition Energies with MCDF Calculations for Kaonic Neon
- Kaonic Atoms can be used for BSQED studies
- Kaonic Neon can be used for Extracting the Kaon Mass

- Kaonic Atoms for Probing Beyond Standard Model Physics
- Work In Progress: Cascade Calculations