Addressing hadron interactions and exotic states via femtoscopy

Oton Vazquez Doce (INFN - Frascati) 🗰

Fundamental Physics with Exotic Atoms - June 23, 2025 Frascati

The femtoscopy method in nucleus nucleus collisions

Accessing hadronic final-state interaction with correlation functions measured in pp collisions

M. Lisa, S. Pratt et al, Annu. Rev. Nucl. Part. Sci., 55 (2005), 357-402, L. Fabbietti, V. Mantovani Sarti and O. Vazquez Doce Annu. Rev. Nucl. Part. Sci. 71 (2021), 377-402

$$C(k^*) = \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^*$$

particle source two-part. wave-function

S.E. Koonin, Phys. Lett. B 70, 43 (1977) S. Pratt and M.B. Tsang, Phys. Rev. C 36, 2390 (1987)

The femtoscopy method in nucleus nucleus collisions

Accessing hadronic final-state interaction with correlation functions measured in pp collisions

M. Lisa, S. Pratt et al, Annu. Rev. Nucl. Part. Sci., 55 (2005), 357-402, L. Fabbietti, V. Mantovani Sarti and O. Vazquez Doce Annu. Rev. Nucl. Part. Sci. 71 (2021), 377-402

 $C(k^*) = \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^*$ S.E. Koonin, Phys. Lett. B 70, 43 (1977) S. Pratt and M.B. Tsang, Phys. Rev. C 36, 2390 (1987) core (fm) Particle-emitting source: ALICE pp $\sqrt{s} = 13 \text{ TeV}$ High Mult. (0-0.17% INEL>0) pp: r* ~ 1fm $p - \pi^+ \oplus \overline{p} - \pi^-$ HI: r* ~ 3-10 fm $p-p \oplus \overline{p}-\overline{p}$ $r_{\rm core} = \mathbf{a} \cdot \langle m_{\rm T} \rangle^{\rm b} + \mathbf{c}$ $\pi^+-\pi^+\oplus\pi^--\pi^-$, Pol1 ALICE Coll. Phys. Lett. B 811 (2020) 135849; Phys. Lett. B $\pi^+-\pi^+\oplus\pi^--\pi^-$, Pol2 861 (2025) 139233, Eur. Phys. J. C (2025) 85:198, arXiv:2502.20200 [nucl-ex] $p-K^+ \oplus \overline{p}-K^-$ Determination of the hadron-hadron source size in pp collisions \rightarrow $k^* = \frac{|\vec{p}_a^* - \vec{p}_b^*|}{2}$ 0.5 0.5 1.5 2 2.5 m_{τ} (GeV/c²) * in pair rest frame

The femtoscopy method in nucleus nucleus collisions

Accessing hadronic final-state interaction with correlation functions measured in pp collisions

M. Lisa, S. Pratt et al, Annu. Rev. Nucl. Part. Sci., 55 (2005), 357-402, L. Fabbietti, V. Mantovani Sarti and O. Vazquez Doce Annu. Rev. Nucl. Part. Sci. 71 (2021), 377-402

$$C(k^*) = \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} = \int S(\vec{r}^*) \left[|\psi(\vec{k}^*, \vec{r}^*)|^2 \right] d^3 \vec{r}^*$$

S.E. Koonin, Phys. Lett. B 70, 43 (1977) S. Pratt and M.B. Tsang, Phys. Rev. C 36, 2390 (1987)

Two-particle wave function: For known source \Rightarrow Study the interaction

We can test, for example, a local potential ⇒ test Lattice QCD predictions of di-baryon bound states with strangeness!

* in pair rest frame

(Multi-)strange meson-baryon systems and exotic states

Interactions between mesons and baryons involving strangeness

- \rightarrow Landmark for hadron-hadron interaction studies
- \rightarrow Possibility to study nature and properties of exotic states

Presence of a rich coupled-channel dynamics

- \rightarrow Systems sharing same quantum numbers (B,S,Q) relatively close in mass
- \rightarrow On- and off-shell processes from one channel to the other

Several candidates for exotic states with molecular nature

- \rightarrow Typically observed close to channel thresholds
- \rightarrow Main example given by the **two-pole** $\Lambda(1405)$ state

J. M.M. Hall et al. Phys. Rev. Lett. 114 (2015) 13 U. G. Meißner Symmetry 12 (2020) 6, 981

5

S=-1 meson-baryon interaction

Large attractive interaction in isospin I=0 channel

 \rightarrow Responsible for formation of $\Lambda(1405)$ below $\overline{K}N$ threshold

Scarce statistics available from scattering data above $\overline{K}N$ threshold

S=-1 meson-baryon interaction

Large attractive interaction in isospin I=0 channel

 \rightarrow Responsible for formation of $\Lambda(1405)$ below $\overline{K}N$ threshold

Scarce statistics available from scattering data above $\overline{K}N$ threshold

Hadron interactions, exotic states (and more) via femtoscopy

High-precision data on S=-1 sector above threshold

Femtoscopy delivers the **most precise data above K⁻-p threshold** → Crucial input for low-energy chiral effective potentials Provides a **quantitative test of coupled channels** Data:

ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020) ALICE Coll. Eur. Phys. J. C 83, 340 (2023)

Strong interaction: Kyoto model K. Miyahara et al., Phys. Rev. C98, 2, (2018) 025201

Oton Vazquez Doce

9

High-precision data on S=-1 sector above threshold

High-precision data on S=-1 sector above threshold

Hadron interactions, exotic states (and more) via femtoscopy

W. Resza @ Hadron 2023

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

Fit to K⁻d correlation function:

Simultaneous fit with 6 free parameters with Lednicky wave function

- Re. K⁺d scatt. length
- Re., Im. K⁻d scatt. length
- r_o x3 centralities

Hadron interactions, exotic states (and more) via femtoscopy

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

What other data can help?

W. Resza @ Hadron 2023

Fit to K⁻d correlation function:

Simultaneous fit with 6 free parameters with Lednicky wave function

- Re. K⁺d scatt. length
- Re., Im. K⁻d scatt. length
- r_o x3 centralities

Parameter fixing in EFTs

- KbarN interaction: Chiral SU(3) dynamical approach.
- From LO to NLO, N²LO... from s to s+p, s+p+d waves
 - ⇒ more parameters to be fixed (by data)

A. Feijoo @ HYP2022

Next to leading order (NLO), just considering the contact term

$$\mathcal{L}_{\phi B}^{(2)} = b_D \langle \bar{B}\{\chi_+, B\} \rangle + b_F \langle \bar{B}[\chi_+, B] \rangle + b_0 \langle \bar{B}B \rangle \langle \chi_+ \rangle + d_1 \langle \bar{B}\{u_\mu, [u^\mu, B]\} \rangle$$

$$+ d_2 \langle \bar{B}[u_\mu, [u^\mu, B]] \rangle + d_3 \langle \bar{B}u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B}B \rangle \langle u^\mu u_\mu \rangle$$

$$- \frac{g_1}{8M_N^2} \langle \bar{B}\{u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]\} \rangle - \frac{g_2}{8M_N^2} \langle \bar{B}[u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]] \rangle$$

$$- \frac{g_3}{8M_N^2} \langle \bar{B}u_\mu \rangle \langle [u_\nu, \{D^\mu, D^\nu\}B] \rangle - \frac{g_4}{8M_N^2} \langle \bar{B}\{D^\mu, D^\nu\}B \rangle \langle u_\mu u_\nu \rangle$$

$$- \frac{h_1}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]Bu_\mu u_\nu \rangle - \frac{h_2}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]u_\mu[u_\nu, B] \rangle - \frac{h_3}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]u_\mu\{u_\nu, B\} \rangle$$

$$- \frac{h_4}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]u_\mu \rangle \langle u_\nu, B \rangle + h.c.$$

• $b_0, b_D, b_F, d_1, d_2, d_3, d_4, g_1, g_2, g_4, h_1, h_2, h_3, h_4$ are not well established, so they should be treated as parameters of the model!

S=-1 meson-baryon interaction

Large attractive interaction in isospin I=0 channel

 \rightarrow Responsible for formation of $\Lambda(1405)$ below $\overline{K}N$ threshold

Scarce statistics available from scattering data above $\overline{K}N$ threshold

Femtoscopy delivers high-precision data close to threshold and on several inelastic channels

Sensitivity to

Accessing the Ξ^-K^+ system with femtoscopy

Most precise data at low momenta on the

interaction between Ξ and kaons

 \rightarrow Important constraints for I=1 channel of

S=-1 meson-baryon interaction

Modeled assuming Lednický-Lyuboshits wavefunction with Coulomb (S-wave only) R. Lednický, Phys. Part. Nucl. 40: 307-352 (2009)

→ Coulomb + strong repulsive interaction assumption agrees with the data

Determination of scattering length from best fit

 $\Re f_0 = -0.61_{\pm 0.07(syst)}^{\pm 0.02(stat)}$ $\Im f_0 = 0.41_{\pm 0.11(syst)}^{\pm 0.04(stat)}$

Constraining the Ξ^-K^+ scattering parameters

Comparison of data with modeling assuming different values of $(\Re f_0, \Im f_0)$

→ Delivered in terms of number of standard deviations (n_a) in $k^* \in [0,250]$ MeV/c

Allowed values for f₀ from **state-of-the-art chiral calculations** at next-to-leading order and phenomenological potentials **constrained** to **available scattering data**

Higher precision constraints can be delivered with correlation data

Moving to the S=-2 sector

Scattering experiments challenging with increasing strangeness

 \rightarrow Ξ (1620) lying across the $\overline{K}\Lambda$ threshold as molecular candidate, poorly known

	ηΞ	ĒΣ	κ̈́Λ	Ξπ
Energ	1870	1683-1691	1609-1613	1449-1461

Moving to the S=-2 sector

Scattering experiments challenging with increasing strangeness

 $\rightarrow \Xi(1620)$ lying across the $\overline{K}\Lambda$ threshold as molecular candidate, poorly known

Intensive searches via spectroscopy measurements

 \rightarrow Combine different production mechanisms/decay channels to reveal the nature of the state

Moving to the S=-2 sector

Scattering experiments challenging with increasing strangeness

 \rightarrow Ξ (1620) lying across the \overline{K} \wedge threshold as molecular candidate, poorly known

Intensive searches via spectroscopy measurements

 \rightarrow Combine different production mechanisms/decay channels to reveal the nature of the state

Hadron interactions, exotic states (and more) via femtoscopy

Accessing the S=-2 meson-baryon interaction

Extending previous Pb–Pb femtoscopic measurements to pp collisions Pb–Pb: ALICE Coll. Phys. Rev. C 103 (2021) pp: ALICE Coll. Phys. Lett. B 845 (2023) 138145

Several structures present in the measured correlation

ALI-PUB-562688

 $C(k^*)$

Accessing the S=-2 meson-baryon interaction

$K^-\Lambda$ correlations and the S=-2 meson-baryon sector

Energy

$K^{-}\Lambda$ correlations and the S=-2 meson-baryon sector

The $\Xi^- \pi^+$ correlation in pp collisions

Femto data for $\Xi^-\pi^+$ down to threshold

The $\Xi^- \pi^+$ correlation in pp collisions.

Femto data for $\Xi^-\pi^+$ down to threshold

Several states visible in the measured correlation

- $\Xi(1530)^0 \rightarrow \Xi^- \pi^+$ (B.R. 100%)
- $\Xi(1620)$ and $\Xi(1690)$ as observed by Belle

Same modeling as in Ξ^-K^+

R. Lednický, Phys. Part. Nucl. 40: 307-352 (2009)

• Evidence of strong attractive interaction

Breit-Wigner for $\Xi(1620)$ and $\Xi(1690)$:

Mass and widths compatible with previous spectroscopic measurements

Scattering parameters for the $\Xi^- \pi^+$ interaction

Rather shallow attractive interaction

 $\Re f_0 = 0.089^{\pm 0.007(stat)}_{\pm 0.009(syst)}$ $\Im f_0 = 0.007^{\pm 0.003(stat)}_{\pm 0.005(syst)}$

Available predictions from NLO chiral potentials constrained to S=-1 data

A. Feijoo et al. Phys. Lett. B 841 (2023), 137927, Phys. Lett. B 853 (2024) 138660

- Affected by large uncertainties
- Overall compatible with our results

```
Novel high-precision data available to constrain this multi-strange meson-baryon sector!
```


ALI-PREL-573636

Conclusions and outlook

Most precise data on ΞK and $\Xi \pi$ at low momenta available

- Novel high-precision constraints on S=-1 and S=-2 baryon interactions available with correlation data
- Input for low-energy effective chiral lagrangians

Femtoscopy is a **complementary tool** to provide precision data on hadron-hadron interactions to **study exotic states**

⇒ Possibility to explore other relevant systems in these sectors with **ongoing Run 3!**

Hadron interactions, exotic states (and more) via femtoscopy

Oton Vazquez Doce

$N-\Omega$ meson-exchange potential

Other approaches [meson-exchange <u>T. Sekihara et al., Phys. Rev. C 98, 015205 (2019)</u>, M. Piquer i Méndez et al., arXiv:2409.16747 [nucl-th] (2024); quark model H Huang et al., Phys. Rev. C 92, 065202 (2015)] predict as well a $J = 2 N-\Omega$ bound state

FIG. 1. Feynman diagrams for the $N\Omega$ interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents $\Lambda \Xi$, $\Sigma \Xi$, and $\Lambda \Xi(1530)$.

$$V = V_A + V_B + c V'_C + \sum_{j=2}^{6} V_{box(j)}$$

Long-range: meson-exchange (a),(b)

$N-\Omega$ meson-exchange potential

Other approaches [meson-exchange <u>T. Sekihara et al., Phys. Rev. C 98, 015205 (2019)</u>, M. Piquer i Méndez et al., arXiv:2409.16747 [nucl-th] (2024); quark model H Huang et al., Phys. Rev. C 92, 065202 (2015)] predict as well a $J = 2 N-\Omega$ bound state

FIG. 1. Feynman diagrams for the $N\Omega$ interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents $\Lambda \Xi$, $\Sigma \Xi$, and $\Lambda \Xi(1530)$.

$$V = V_A + V_B + C V'_C + \sum_{j=2}^{6} V_{box(j)}$$

Long-range: meson-exchange (a),(b)

Short range: contact term, coupled through constant c

- $c = -22.1 \text{ GeV}^{-1}$ fixed by fit to Lattice QCD potential

$N-\Omega$ meson-exchange potential

Other approaches [meson-exchange <u>T. Sekihara et al., Phys. Rev. C 98, 015205 (2019)</u>, M. Piquer i Méndez et al., arXiv:2409.16747 [nucl-th] (2024); quark model H Huang et al., Phys. Rev. C 92, 065202 (2015)] predict as well a $J = 2 N-\Omega$ bound state

FIG. 1. Feynman diagrams for the $N\Omega$ interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents $\Lambda \Xi$, $\Sigma \Xi$, and $\Lambda \Xi(1530)$.

$$V = V_A + V_B + C V'_C + \sum_{j=2}^{6} V_{box(j)} \implies V = V_A + V_B + \beta c V'_C + \sum_{j=2}^{6} V_{box(j)}$$

Long-range: meson-exchange (a),(b)

Short range: contact term, coupled through constant *c*

- $c = -22.1 \text{ GeV}^{-1}$ fixed by fit to Lattice QCD potential

⇒ Tuning of the short-range part using femtoscopy data:

- Multiplicative parameter β weights the contact term
- Starting point $\beta=1$ (original potential fitted to Lattice)

Tuning the p- Ω potential with femtoscopy data

0.4 0.2

Tuning the p- Ω potential with femtoscopy data

Pin down the presence and characteristics of NΩ state:
⇒ Experimental info on coupled channels: ΞΛ ALICE Coll. PLB844 (2023) 137223
⇒ Different collision systems → scan different source sizes
⇒ ML approaches for multivariate analysis L. Wang, JSPC 3 (2025) 100024

M. Piscitelli @ ALICE Italy 2024

- J=2 only: large χ^2 values
- Indetermination on J=1: large variation in β values

Studying molecular states

Intensive searches via spectroscopy measurements: $\Xi(1620)$, $\Xi(1690)$ states in the S=-2 sector $\rightarrow \Xi(1620)$ lying across the $\overline{K}\Lambda$ threshold as molecular candidate, poorly known

Accessing the S=-2 meson-baryon interaction

Femtoscopy: most precise data for ΛK^- down to threshold ALICE Coll. Phys. Lett. B 845 (2023) 138145

Model: Interplay between **resonant (Flatté-like)** and **non-resonant** interaction

- First experimental evidence of $\Xi(1620) \rightarrow \Lambda K^-$

\Rightarrow Ξ (1620) and Ξ (1690) properties

- Overall compatible with previous Belle and LHCb results
- Indication of a large coupling of $\Xi(1620)$ to ΛK^-

Hadron interactions, exotic states (and more) via femtoscopy

Accessing the S=-2 meson-baryon interaction

Femtoscopy also delivers the most precise data down to threshold in the $\Xi\pi^-$ channel!

Deuteron femtoscopy: test the emission time

New femtoscopy results available utilizing deuteron femtoscopy

- p-d and d-d correlation functions in Au+Au collisions \Rightarrow test coalesence afterburners STAR Coll. 2410.03436 [nucl-ex]
- p-d and K⁺-d femtoscopy in pp collisions \Rightarrow access dynamics of three-body systems ALICE Coll. Phys. Rev. X 14, 031051 (2024)

Deuteron femtoscopy: test the emission time

New femtoscopy results available utilizing deuteron femtoscopy

- p-d and d-d correlation functions in Au+Au collisions \Rightarrow test coalesence afterburners STAR Coll. 2410.03436 [nucl-ex]
- p-d and K⁺-d femtoscopy in pp collisions \Rightarrow access dynamics of three-body systems ALICE Coll. Phys. Rev. X 14, 031051 (2024)

K⁺-d correlation function in pp collisions:

Interaction: with Lednicky model using K⁺-d known scattering parameters

- ER (effective-range approximation): $a_0 = -0.47$ fm, $d_0 = -1.75$ fm
- FCA (fixed-center approximation): $a_0 = -0.54$ fm, $d_0 = 0$ fm

<u>Source</u>: Gaussian + effects of short lived resonances from p-p m_{T} scaling

⇒ Coulomb + strong interaction + small radius describes the data

Deuteron femtoscopy: test the emission time

New femtoscopy results available utilizing deuteron femtoscopy

- p-d and d-d correlation functions in Au+Au collisions \Rightarrow test coalesence afterburners STAR Coll. 2410.03436 [nucl-ex]
- p-d and K⁺-d femtoscopy in pp collisions \Rightarrow access dynamics of three-body systems ALICE Coll. Phys. Rev. X 14, 031051 (2024)

K⁺-d correlation function in pp collisions:

Interaction: with Lednicky model using K⁺-d known scattering parameters

- ER (effective-range approximation): $a_0 = -0.47$ fm, $d_0 = -1.75$ fm
- FCA (fixed-center approximation): $a_0 = -0.54$ fm, $d_0 = 0$ fm

<u>Source</u>: Gaussian + effects of short lived resonances from p-p m_{T} scaling

⇒ Coulomb + strong interaction + small radius describes the data

CECA model for particle emission in small coll. systems

CECA free parameters:

- $r_d \sim 0.3 \text{ fm} \rightarrow \text{Position of initial scattering}$
- h^{\sim} -3 fm \rightarrow Hadronisation parameter
- $\tau \sim 3 \text{ fm/c} \rightarrow \text{Decoupling time}$

CECA: MC simulation of single particles and resonances

D. Mihaylov, J. González, Eur.Phys.J.C 83 (2023) 7, 590

- Assume a common ellipsoidal 'hadronization surface' ⇒ serves as a source of spatial-momentum correlations
- Effects of short-lived resonances decay taken into account

• Reproduces m_{τ} scaling of source size.

Parameters fixed by p-p, p-A femtoscopy data in pp coll. ALICE

Deuteron emission time in CECA

Test two scenarios for deuteron production in CECA adding a deuteron delay τ_{delay}

Scenario A

deuteron formed via <u>coalesence</u> of nucleons produced <u>after resonance decay</u>

Scenario B primary production of deuterons

Deuteron emission time in CECA

Test two scenarios for deuteron production in CECA adding a deuteron delay τ_{delay}

Scenario A

deuteron formed via <u>coalesence</u> of nucleons produced <u>after resonance decay</u>

Scenario B primary production of deuterons

Hadron interactions, exotic states (and more) via femtoscopy

Oton Vazquez Doce

Maximum allowed deuteron emission time

O. Vazquez Doce, D. Mihaylov, L. Fabbietti, Eur. Phys. J. A 61, 53 (2025)

Extract τ_{delay} by fitting K⁺-d data with **Coulomb+strong interaction + CECA source**

Scenario A: deuteron after resonances

- Best fit: $\tau_{delay} = 1 \text{ fm/c}$
- Maximum allowed (3 σ) $\tau_{delay} = 2.25$ fm/c Scenario B: primary produced deuterons
 - Best fit: $\tau_{delay} = 3.5 \text{ fm/c}$

- Maximum allowed (3
$$\sigma$$
) $\tau_{delay} = 4.75$ fm/c

Hadron interactions, exotic states (and more) via femtoscopy

Maximum allowed deuteron emission time

O. Vazquez Doce, D. Mihaylov, L. Fabbietti, Eur. Phys. J. A 61, 53 (2025)

Extract τ_{delay} by fitting K⁺-d data with **Coulomb+strong interaction + CECA source**

Scenario A: deuteron after resonances

- Best fit: $\tau_{delay} = 1 \text{ fm/c}$
- Maximum allowed (3σ) τ_{delay} = 2.25 fm/c Scenario B: primary produced deuterons
 - Best fit: $\tau_{delay} = 3.5 \text{ fm/c}$
 - Maximum allowed (3 σ) τ_{delay} = 4.75 fm/c
 - ⇒ <u>Favor</u> early formation of deuteron as extended, weakly bound composite object in pp collisions at the LHC
 - ⇒ <u>Disfavor</u> a compact doorway state reaching proper size and binding energy after a time > 5 fm/c

Oton Vazquez Doce

Femtoscopy addressing key challenges in Hadron Physics

Checklist

- Test hadron-hadron interactions
 ⇒ study the formation of bound states
- Complement spectroscopy
 ⇒ study molecular states
- Reveal the signatures of formation mechanisms of light nuclei

thank you for your attention!

ΞΛ femtoscopy in pp collisions

Physics Letters B 844 (2023) 137223 ALICE Coll.

room for larger delay?

6.5 fm delay $\geq 5\sigma$

