

Bulk Acoustic Wave devices for HFGW [and axions]

Informal meeting with FLASH

Outline

- BAUSCIA (funded by MUR under "progetto Dipartimenti di Eccellenza 2023-2027")
- A few details on BAWs

Contributors:

- M. Borghesi, M. Benaglia, L. Canonica, F. De Guio, M. Faverzani, E. Ferri, A. Ghezzi, R. Gerosa, A. Giachero, D. Labranca, M. Malberti, L. Mariani, A. Nucciotti, G. Pessina, TTdF (Milano Bicocca)
- W. Campbell, M. Goryachev, and M. Tobar (University of Western Australia)

Dipartimento di Fisica G. Occhialini Centro Bicocca di Cosmologia Quantitativa

BICOQ

"Bulk Acoustic Wave Sensors for a High frequency Antenna (BAUSCIA, in Milan's dialect)

Seminal proposal by M. Goryachev and M. Tobar, <u>PRD 90,102005 (2014)</u>

Resonant mass detector with sensitivity at multiple frequencies provided by

- Multiple <u>overtones</u> sensing per BAW
 - Array of many BAWs tuned to different frequencies ightarrow requires specific R&D on BAWs

BAUSCIA: two-stage plan

- 1. <u>Multimode</u> antenna w/ commercially available BAWs (multi-site detection with MAGE)
- 2. Array of <u>customized BAWs</u> to cover a broad spectrum of frequencies
 - Multiple overtones from three families of standing waves with different velocities
- (Primary) target: GW sources including DM candidates and "standard" signals:
 - PBH binary mergers optimal [Franciolini, Maharana, Muia Phys. Rev. D 106, 103520]
 - Black hole superradiance (QCD axion annihilations to gravitons in cloud around black holes)
 [<u>A. Arvanitaki et. al PRD 83, 044026 (2011)</u>]
 - **QCD phase transition** in binary neutron stars post-merger (in coincidence with LVK) at $f \sim 0.6$ MHz
 - Casalderrey-Solana, Mateos, Sanchez-Garitaonandia, arXiv:2210.03171
- Sinergies with axion / dark photons to explore
 - E.g., <u>T.Trickle, arXiv:2501.05504</u> (sensitivity depends in the same BAW parameters)

Detection limit and strain sensitivity

Noise dominated by <u>BAW thermal noise at resonance (SQUID noise negligible)</u>

Single sided spectral density from spectral density of force fluctuations (Nyquist)

$$\sqrt{S_h^+(f)} = \frac{2}{\pi h_0 \bar{\xi}_{\lambda} f} \sqrt{\frac{w(\omega) k_B T}{Q_{\lambda} \omega_{\lambda} m_{\lambda}}} \left[\frac{strain}{\sqrt{Hz}}\right]$$

 $\lambda = (X, n, m, p)$

✓ DEGLI STUDI

► X = mode,

- n = overtone number
- m and p = transverse mode indices
- $w(\omega)$: phonon statistic distribution weight (not critical)
- m_{λ} : effective (vibrating) mass [shown for n,0,0 in the picture-
- Q_{λ} : cavity quality factor
- ξ: dimensionless coupling coefficient to GW: scales with 1/n²
 [has also a mild dependence on phonon trapping]
- Projected single-sided spectral density around $10^{-21}/\sqrt{\text{Hz}}$ at T = 20 mK (Q ~ 10⁹) for n = 3, 5, 7
 - Optimal sensitivity limited to $\sim 5 50$ MHz
 - Current MAGE experiment at 4K
 [W. Campbell et al. <u>ArXiv: 2307.00715</u>]

MAGE (UWA)

- Two BVA quartz cavities (low-loss design)
- Plano-convex SiO₂: d~1 mm
- Electrodes deposited on separated SiO2 plates

BAUSCIA (Milano Bicocca)

- <u>Off-the-shelf</u> quartz cavities (Rakon XO)
- SiO₂ crystal with four rigid mounts: $d\sim1$ mm
- Electrodes deposited on BAW (suboptimal?)

Room temperature:

Q ~ 10⁶

- Optimized for the 3rd overtone of the C-mode (slow shear) at ~5 MHz (clock standard)
- Low Q at n=1 (lwhere the coupling to GW is largest)
- Cryogenic temperatures:

Q > 10⁷ (low overtones)

[up to 10⁹ at high frequencies but reduced coupling to GW signals]

1.0

0.8

0.6

0.4

0.0

0

Thickness [mm] / Mode amplitudes

Plano-convex shapes minimize mechanical losses through supports

6

5

4

Radius [mm]

3

- Admits standing waves (phonon modes) with Gaussian profile in the transverse direction [Stevens-Tiersten model and axial symmetry]
- Same effective (vibrating) mass in BAUSCIA and MAGE sensors, despite different size
 - Resonances at n = 1 are not observed (Q factor too low) in both cavities
- Same Q factor at room temperature (no need to over-confine the vibration)

Radius [mm]

BICOQ

Q-factor comparable to devices in use at the MAGE experiment

- Thorough characterization at n=3, 5 and 7, and cross-comparison with UWA devices in progress
- Indication of further (mild) improvement at T<4 K for MAGE not observed for BAUSCIA devices</p>
 - Tentatively ascribed to manufacturing differences (electrode deposition on quartz)

• Stage 1:

- Devices are good enough to setup an antenna with sensitivity comparable to MAGE
- Two devices available and ready to go (working on SQUIDs and DAQ, awaiting for dedicated criostat)
 - One device sacrified to measure BAW parameters (undisclosed by the vendor)

Stage 2:

- Optimization of BAWs and R&D in progress
 - Inquired several manufatcurers of oscillators and bare crystals with limited success
 - BAWs are becoming an obsolete technology for clock and telecommunications
 - Vendors requires huge productions to become interested
- Procuring blanks of SiO2 crystals (24 blanks in production with thickness between 1 mm and 30 mm)
 - Require post-processing and optimization of the setup (though copying the Rakon setup might be OK)
 - Create plano-convex geometry providing confinement
 - Electrode depositon / external pickup
 - Support stiffness
- Investigating alternatives cuts of the crystals (cost impact and size impact);
 - SC cut (φ=35°, θ=21°54′ +/- 0.1')
 - high stablity of the frequency vs temp., tight tolerances, complex processing, limited crystal size
 - AT cut (φ=35°)
 - Lower stability ves temp. (not a tight requirement for us), relaxed tolerances
- Investigating alternative crystals (LiNbO3) and geometries ("mesa") to achieve confinement