Innovative gamma-ray detectors for environmental and space monitoring

XXXVII cycle – DM1061

PhD final dissertation

PhD Student: Leonarda Lorusso

Tutors: Prof. Francesco Loparco Prof. Francesco Giordano

07/04/2025

- 1. Goal of the project & scientific topic
- 2. The imaging calorimeter prototype (detector concept, assembling, readout electronics)
- 3. Characterization of the prototype:
 - in Bari INFN laboratories with Sr90 and CRs
 - at CERN facilities
- 4. GEANT4 Simulation of the prototype

PhD project summary

GOAL: development of innovative satellite-borne or air-borne detectors for low-energy gamma rays (MeV-GeV band)

Detectors need to meet constraints for space applications

 Imaging calorimeter prototype exploiting the SiPM technology and the coupling between a scintillator crystal and the WLS fibers

High segmentation - Reduced material budget - Reduced power consumption

Scientific applications

Detection of gamma rays of astrophysical origin: transient events (Solar Flares, GRBs) and CR interactions with the surface of celestial bodies or the earth's atmosphere

Terrestrial applications

Monitoring of the environmental radioactivity: natural isotopes and artificial products (due to anthropogenic activity, ex: Cs-137, I-131, Co-60)

Science Topic: low-energy gamma rays

- Many astrophysical gamma-ray sources have peak emissivity at energies in the MeV-GeV band
- Satellite experiments are required for detecting gamma rays above the atmosphere

- Instrumental limitations have made the exploration of this energy band difficult:
 - Limited capability to evaluate the incoming direction of the photons
 - Large background due to the deactivation of irradiated materials in space
- Recent progress in Silicon detectors and readout microelectronics have re-opened this topic and triggered the development of new detectors

Imaging calorimeter prototype: principle of operation

- An ionizing particle leaves an energy deposit (ΔE) inside the scintillator crystal
- Scintillation light is isotopically produced in the crystal, with a light yield (LY) depending on the material
- WLS fibers within the acceptance cone collect the scintillation photons, shift their wavelengths towards green, and transport them to SiPMs at their ends

 $N_{pe} = LY \times \Delta E \times f_1 \times \varepsilon \times PDE$

- Scintillator crystal WLS fibers **SiPMs** - best optical matching between - high gain crystal peak emission and - linearity sensor PDE
 - micro-cells (side and pitch) determine the number of fibers connected to individual SiPMs

- high light yield

- matching emission and WLS absorption
- fast decay time

 thickness as a trade off between the absorption length of the incident photon and the range of the electron

Crossed fiber planes allow to evaluate (x,y) into the crystal

- fiber size as a trade off

spatial resolution

between energy resolution and

Imaging calorimeter prototype: detector concept

Construction of the prototype

Modular structure

 Single X-Y module: 3 mm thick LYSO crystal coupled with two crossed planes of Kuraray Y-11 1mm side square WLS fibers, on its top and bottom faces, read-out by Hamamatsu 128-channels SiPM arrays S13552 at their ends

Read-out system

SiPM channel configuration

PWB interfaces enable different read-out pitches by OR-ing groups of 4 adjacent channels

Trigger: coincidence in a short time window of signals from at least two different channels at opposite sides

Front-end board

PETIROC 2A (32 channel chip): 32 ADC, TDC and digital outputs for triggering

Kintex-7 FPGA module: data management, trigger, coincidence

CAEN A7585D SiPM voltage module

NIM I/O for ext trigger

Ethernet

Read-out system

SiPM channel configuration

particle

0.25 mm

1 mm

PWB interfaces enable different read-out pitches by OR-ing groups of 4 adjacent channels

Trigger: coincidence in a short time window of signals from at least two different channels at opposite sides

The charge of each channel in terms of photoelectrons: $N_{pe}[i] = \frac{ADC[i] - pede[i]}{gain[i]}$ Cluster = a group of adjacent strips with a signal at least 3σ above the pedestal

Front-end board

PETIROC 2A (32 channel chip): 32 ADC, TDC and digital outputs for triggering

Kintex-7 FPGA module: data management, trigger, coincidence

CAEN A7585D SiPM voltage module

NIM I/O for ext trigger

Ethernet

Prototype characterization: measurement setups

Prototype characterization: light yield results

Reduced module

- WLS and LYSO p.e. are correlated and as expected $WLS_{pe}/LYSO_{pe} \sim 12$ %
- However, the values of the collected charges in the SiPMs connected to the LYSO fibers and to the WLS crystal correspond respectively to the 60% and to the 88% of the expected values.

 Direct light contribution into LYSO
Optical grease improves the light collection by SiPMs

Published in: DOI:10.1016/j.nima.2024.169827

Prototype characterization: light yield results

- WLS planes closer to Sr90 collects a higher charge than the other, due to the range of β electrons in the WLS and in the LYS0 - they exhibit two peaks: around 10 p.e. and 20 p.e

- WLS planes far from Sr90 like background
- comparing "symmetric" configurations: sideO collects more charge than side1, due to different couplings between the WLS fiber planes and the crystal surfaces.

Two-module tower

More light collected in Setup4 thanks to the optical grease between the WLS fibers and the LYSO crystal

Beam Test at CERN PS T-10 (2023)

Beam: π^+ 10 GeV/c

TO, T1: 10 cm square tile, 2 fingers (1cm) and 1 veto tile (2cm hole): external trigger system

Double-peak structure at 20 p.e. and 40 p.e. in each side \rightarrow expected value: 129 p.e.

Beam Test at CERN SPS H-8

Entries

Beam: 150 GeV/c per nucleon

- Charge conversion $Z_{rec} = \sqrt{N_{pe}/N_{first}}$
- At higher Z, the linearity is loss, and the peaks are less evident

- For Y view: study of the X/Y view correlation \rightarrow the peak corresponding to Z = 1 seems to be overwhelmed by the noise peak at Z < 1

Beam Test at CERN PS T-10 (2024)

Beam: π^+ 10 GeV/c

- Differences from the beam test at T-10 of 2023:
 - WLS single module readout by only one side of the X and Y view
 - Between LYSO crystal and WLS fibers a thin layer of optical grease was spread
- The 2023 data in the following plots are referred to the SiPMs on the same side as in 2024.

- two peaks in 2023 at 20 p.e. and 40 p.e. -> two peaks in 2024 at 20 p.e. and 125 p.e. (expected ~ 300 p.e.)
- 1st peak: scintillation light produced by π in the WLS; 2nd peak: light produced in the LYSO crystal
- Y view less efficient than X view

Simulation study

- Geant4 simulation with optical photons for detector performance studies
- Primary particle generated in a circular region of 1 mm radius
 - □ e⁻ of linear energy between 0,5 and 2,2 MeV

LYSO						
Refractive index	1,82					
Density [g/cm ³]	7,25					
Light yield [ph/ke\	30					
Time decay [ns]	42					
WLS (PMMA + Polystirene)						
Cladding refractive	1,49					
Core refractive Ind	1,59					
Time delay [ns]	7,1					
SiPM array						
Refractive index	1,55					
PDF	λ dependent					

Simulation results: electrons

 N_{pe} computed from optical photons extracting a p.e. (extraction probability given by the PDE)

 Hit microcells of a strip are counted only once (saturation effect)

Peak at ~20 p.e. consistent with the experimental results

Leonarda Lorusso

Simulation results: pions

Total energy deposited in LYSO and WLS Y view

of 15 ph/keV Leonarda Lorusso

Conclusions (1/2)

- 1. R&D of an innovative detector for low-energy gamma rays, based on a **scintillator crystal** coupled with **WLS fibers** and exploiting the **SiPM technology**
- 2. Different detector prototypes tested in the INFN Bari laboratories with a Sr-90 and CR, for **light yield studies**:
 - i. correlation between the LYSO and WLS charges (~ 60% and 88% of the expected values)
 - ii. more light is found in the setup with the optical grease, as expected, thanks to the optimal matching of refractive indices
- 3. Single module tested in 2023 at CERN-PS T10 beam line with 10 GeV/c π^+ : charge distributions exhibited a **two-peak structure**, at 20 and 40 p.e., quite below the expected number of photoelectrons

Conclusions (2/2)

- 4. Single module tested at CERN-SPS H8 line with ions: peak structure associated to the **lighter nuclei**
- 5. Single module with optical grease tested in 2024 at CERN-T10 beam line with 10 GeV/c π^+ : two-peak structure at 20 and 125 p.e.. in the layer upstream the crystal, increased w.r.t. the module without optical grease, but below the theoretical expectations.
- 6. GEANT4 simulation:
 - 1. simulated data reproduce experimental results obtained with Sr90 in laboratory, but only for the SiPM connected to the WLS fiber layer closer to the source;
 - 2. simulated data with primary pions reproduce the experimental results only reducing by a factor 2 the light yield of the LYSO crystal
- 7. Future developments: different crystals (GAGG, CsI), tests on a drone.

THANKS FOR THE ATTENTION

Leonarda Lorusso

Backup

Low-energy gamma ray interaction

The dominant process of gamma-matter interaction is Compton scattering

It is needed the measurement of the energies and directions of the photons and the recoil electron \rightarrow the detector has to ensure optimal energy and angular resolution

Compton detection technique

Scintillator crystal characteristics

Material	Emission peak [nm]	Light Yield [ph/MeV]	Density [g/cm ³]	Refr. index ^a	X_0 [cm]	FWHM ^b [%]	Decay time [ns]	Hygro- scopic
NaI(Tl)	415	38-55 k	3.67	1.85	2.6	7	230	yes
$\operatorname{CsI}(\operatorname{Na})$	420	38-44 k	4.51	1.84	1.86	7-8	630	slightly
CsI(Tl)	550	52-65 k	4.51	1.79	1.86	7-8	600-3400	yes
BGO	480	8-10 k	7.13	2.15	1.13	> 9	300	no
GAGG(Ce)	520	22-60 k	6.63	1.9	1.54	5.1	50 - 100	no
LYSO(Ce)	420	30-33 k	7.1 - 7.2	1.82	1.15	8-10	40-45	no
$LaBr_3(Ce)$	380	63 k	5.29	1.9	1.88	2.7	16	yes
$CaF_2(Eu)$	435	19-30 k	3.18	1.47	-	3.8-4	940	VOS

Leonarda Lorusso

 $^a\mathrm{Index}$ of refraction at the wavelength of maximum emission,

^bEnergy resolutions quoted at 661.7 keV

Petiroc 2A ASIC architecture

- 32-channels ASIC
- PA for internal trigger and timing
 - 10-bits global DAC threshold + 6-bits individual DAC threshold
 - o 32 individual trigger outputs
 - OR-32 trigger output
- ADC for charge measurements -10 bits
 - \circ 4-bits for the CR-RC shaping time
 - o OR-32 charge trigger
 - TDC to measure the arrival time
 - 9 bits for coarse time -25 ns resolution
 - \circ 10 bits for fine time -37 ps resolution
- DIGITAL read-out
 - \circ 12 µs conversion time
- Power: 192 mW
- TRL: 6

Fiber Tracker prototype

- Detector: 3 X-Y modules
- Each X-Y module consisting of two view planes
- Each view: two staggered layers of round scintillating fibers
 - ο Kuraray SCSF-78MJ 500 μm
 - o Kuraray SCSF-78MJ 750 μm
- Each view readout by SiPM array Hamamatsu S13552
 - o 128-channel
 - \circ 250 μ m strip pitch

- A charged particle crossing a plane will release an energy deposit in at least a pair of adjacent fibers in the top and bottom layers
- Scintillation photons will be then collected by at least a pair of adjacent SiPM strips

Internship at Omega Microelectronics

6-month internship:

- Characterization of the RADIOROC ASIC with three different detector capacitances
- Study of the performance of SiPM in terms of charge and time resolution with RADIOROC ASIC

	HAM S13361- 2050NE- 08	HAM S13360- 3050CS
Sensitive area (mm ²)	2 x 2	3 x 3
Pixel pitch (μm)	50	50
Gain	1,7 x 10 ⁶	1,7 x 10 ⁶
Terminal Capacitance (pF)	140	320

diffuser

Radioroc ASIC architecture

Time low threshold DAC1: 1 – 5 p.e.

Time high threshold DAC2: 5 – 10 p.e.

Analog charge preamplifier/shaper output

Digital time preamplifier output (trigger)

Not working yet

Power: 310 mW