

Search for $H \rightarrow c\bar{c}$ at CMS in VBF production with Run-3 data

PhD defense – XXXVII cycle 07/04/2025 PhD candidate:Angela ZazaSupervisors:Prof. Anna Colaleo

Prof. Rosamaria Venditti

Motivation of the search

- Higgs boson coupling with gauge bosons and third generation fermions measured with precision of ~10%
- First evidence for $H \rightarrow \mu\mu$ at 3σ with Run-2 data
- Higgs coupling to **second generation quarks** still out of reach

- one of the highest priority goals of CMS and ATLAS physics program
- Discrepancies from SM prediction could provide valuable insights into new physics (BSM model in backup)

State of the art: CMS and ATLAS (1)

Search for VBF $H \rightarrow c\overline{c}$ at CMS

Challenges of this search

- Lack of a suitable trigger before this study
 - development of a dedicated trigger with c-tagging online
- Identification of c jets
 - novel ParticleNet heavy-flavour tagger
- Overwhelming QCD background
 - machine learning approaches for signal vs background discrimination
- ► Large number of resonant backgrounds: $H \rightarrow bb$, $Z \rightarrow qq$, $W \rightarrow qq$
 - Sophisticated signal extraction

Four quarks in the final state:

Four quarks in the final state:

 two charm quarks produced by the Higgs boson decay emitted centrally

Four quarks in the final state:

- two charm quarks produced by the Higgs boson decay emitted centrally
- two quarks produced by the VBF emission emitted forward and backward, with large aperture

Four quarks in the final state:

- two charm quarks produced by the Higgs boson decay emitted centrally
- two quarks produced by the VBF emission emitted forward and backward, with large aperture
- Quarks hadronize into spray of particles reconstructed as jets
- Jet properties exploited in trigger development and BDT algorithm implementation

Search for $H \rightarrow c\bar{c}$ at CMS: Object reconstruction and Trigger studies

CMS Experiment

Compact Muon Solenoid (CMS) General purpose detector at the Large Hadron Collider (**LHC**)

proton-proton collisions in Run-3:

- center-of-mass energy: 13.6 TeV
- ▶ peak instantaneous luminosity: 2 · 10³⁴ cm⁻² s⁻¹

Jets and heavy-flavour tagging

Background Efficiency

10-2

10-3

0

Heavy-flavour jets:

- Lifetime of b (c) hadrons ~ 1.5 ps (~1 ps)
 → displaced tracks from PV (impact parameter)
 → seconday vertex
- Larger mass and harder fragmentation wrt light quarks and gluons
 → larger p_T of the decay products
- Presence of a muon or electron in 20% (10%) of the cases

- Customized dynamic graph convolutional neural network (DGCNN)
- Each jet represented as an unordered, permutation-invariant set of particles → particle cloud
- Developed for boosted jets in 2020, then adapted to small-radius jets
- Outstanding improvements wrt DeepJet (default tagger in Run-2)

jet E_r or particle mass (GeV)

Trigger studies: L1 seeds (1)

First step for the implementation of the HLT path: Definition of a set of L1 seeds

Large number of fake jets from Pile-up interactions \rightarrow study of kinematic distributions of signal and fake jets for discrimination

(s=13.6TeV

Jets reconstructed with L1 information geometrically matched with quarks from MC truth

Trigger studies: L1 seeds (2)

List of L1 seeds included in the HLT path dedicated to VBF $H \rightarrow c\bar{c}$

L1 seed	Selection		
L1_TripleJet_95_75_65_DoubleJet_75_65_er2p5	3 jets with • p _T > 95, 75, 65 GeV	2 jets with • $p_T > 75, 65 \text{ GeV}$ • $ \eta < 2.5$	
L1_TripleJet_100_80_70_DoubleJet_80_70_er2p5	3 jets with • p _T ≥ 100, 80, 70 GeV	2 jets with • $p_T > 80, 70 \text{ GeV}$ • $ \eta < 2.5$	
L1_SingleJet180	1 jet with p_T > 180 GeV		
L1_SingleJet200	1 jet with p_T > 200 GeV		
L1_DoubleJet_110_35_DoubleJet35_Mass_ _Min620	2 jets with •	2 jets with • p _T > 35 GeV • Inv mass > 620 GeV	
L1_QuadJet_95_75_65_20_DoubleJet_75_65_ _er2p5_Jet20_FWD3p0	4 jets with • p_T > 95, 75, 65, 20 GeV 1 jet with p_T > 20 GeV and $ \eta $ > 3	2 jets with • p_T > 75, 65 GeV • $ \eta $ < 2.5	
L1_HTT360er	HTT > 360 GeV		

Trigger path for VBF $H \rightarrow c\overline{c}$

CMS ELECTRIC ELECTRIC

HLT_QuadPFJet100_88_70_30_PNetTag1CvsAll0p5_VBF3Tight

Trigger path for VBF $H \rightarrow c\overline{c}$

HLT_QuadPFJet100_88_70_30_PNetTag1CvsAll0p5_VBF3Tight

Trigger path for VBF $H \rightarrow c\overline{c}$

HLT_QuadPFJet100_88_70_30_PNetTag1CvsAll0p5_VBF3Tight

Trigger acceptance: 1.8%

 Deployed online for 2023 data taking and collecting data since!

Trigger performance studies - p_{T}

MC do not replicate data perfectly \rightarrow mismatching in trigger performance to be accounted for with proper scale factors (SF)

 $SF = SF_{nT} \cdot SF_{ctag} \cdot SF_{VBF}$

1. p_T trigger SFs:

Tag and probe method

- Events with back-to-back di-jet topology selected
- Tag: leading offline jet matched to an HLT object
- Probe: subleading offline jet

For each p_T threshold (thr) Efficiency:

 p_{T} probe, matched to HLT jet with $p_{T} > thr$

 $p_T probe$

validated on events selected with the control path HLT QuadPFJet100 88 70 30: exactly the same as the signal path, without c-tagging and VBF sequences

p_jet1 (GeV)

Data 2023C

p_-probe (GeV)

Data 2023C

MC QCD

MC OCD

Trigger performance studies - ctag

MC do not replicate **data** perfectly \rightarrow **mismatching** in trigger performance to be accounted for with proper scale factors (SF) $SF = SF_{pT} \cdot SF_{ctag} \cdot SF_{VBF}$ **HLT_PNetCvsAll0p5**

- **2.** c-tag trigger SFs:
 - evaluated on data and QCD MC events selected with control path HLT_QuadPFJet100_88_70_30 and VBF offline selection

Efficiency = $\frac{PNet offline \ score \ of \ the \ most \ c-tagged \ jet, \ HLT: signal+control}{PNet \ offline \ score \ of \ the \ most \ c-tagged \ jet, \ HLT: control}$

- **3.** VBF trigger SFs:
 - Assumed to be ~1

Search for VBF $H \rightarrow c\bar{c}$ at CMS: Statistical analysis of 2023 data (27 fb⁻¹)

Offline pre-selection

- Trigger HLT_QuadPFJet100_88_70_30_PNet1CvsAll0p5_VBF3Tight_v
- Electron/Muon veto
- MET p_T < 170 GeV
- 4 leading p_T jets with p_T > 105, 90, 75, 35 GeV and $|\eta| < 4.7$ matching with HLT objects
- 2 jets with highest PNet CvsL score and |η| < 2.4: c-jets respectively medium and tight c-tagging WPs are applied
- Other 2 jets: VBF-jets
- VBF jets: invariant mass > 500 GeV, $\Delta \eta$ > 3.8

Data/MC corrections: Gen weights, PU reweighting, trigger SFs, JECs

$H \rightarrow c\bar{c} vs QCD discriminator (1/4)$

BDT trained over signal from MC and bkg from data in sidebands with:

VBF related variables

- m_{qq}: invariant mass of the two VBF jets
- $|\Delta \eta_{qq}|$: absolute pseudorapidity difference of the two VBF jets
- $\Delta \phi_{aq}$: absolute azimuthal angle difference of the two VBF jets
- α_{qq} : Min(α_{q1} , α_{q2}), where $\alpha_{q1/q2}$ is the angle between the lead/sublead VBF jet and the boosted system of the VBF jet pair
- QvsG: PNet QvsG score of the two VBF jets

$H \rightarrow c\bar{c} vs QCD discriminator (2/4)$

BDT trained over signal from MC and bkg from data in sidebands with:

Higgs related variables

- c-tagging: CvsL and CvsB PNet scores of the two c jets
- total longitudinal momentum of the selected four jets
- normalized sum of the transverse momenta of the selected four jets
- angular distance ΔR between the Higgs boson candidate and the lead and sublead VBF jets
- $\Delta(\phi_{qq} \phi_{cc})$: difference of azimuthal angle of the VBF jet pair system and the c jet pair system

$H \rightarrow c\bar{c} vs QCD discriminator (3/4)$

BDT trained over signal from MC and bkg from data in sidebands with:

Event related variables

- jet multiplicity in the region $|\eta| < 2.4$ above 20 GeV
- Sum of energy and transverse momentum of all the jets with p_T > 30 GeV and |η| < 2.4 excluding the selected four jets</p>

$H \rightarrow c\overline{c} \text{ vs QCD discriminator (4/4)}$

⊳

- BDT trained over signal from MC and bkg from data sidebands
- Overall good agreement between training and test distributions
- ▶ Three categories based on the BDT score

 category
 BDT score

 CAT0
 0.8 - 0.9

 CAT1
 0.9 - 0.95

 CAT2
 0.95 - 1

QCD from MC (mismodeling effects) better agreement in the signal region

MC shapes (Hcc, Hbb, Zqq, Wqq)

A. Zaza MC distributions fitted with CB and Bernstein polynomial function

Continuum background modelling

- > The continuum background shape is extracted from an exponential fit of the mass spectrum in the sidebands of Higgs nominal mass: [80,104] – [146,200] GeV
- ▷ QCD, Z peak and W peak fitted to data sidebands simultaneously (Z/W model taken from fit to MC histograms)

29

Fit bias uncertainty:

- related to the choice of the continuum background fitting function

- assumed a conservative 20% on the signal (spurious signal method)

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$gg H o c \bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
$\begin{array}{c} \text{Higgs XS} \\ \text{PDF} + \alpha_s \end{array}$	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

- Fit bias uncertainty:
 - related to the choice of the continuum background fitting function
 - assumed a conservative 20% on the signal (spurious signal method)

• c tagging:

- assumed a conservative 10% uncertainty on the yields

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$gg H o c \bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
$\begin{array}{c} \text{Higgs XS} \\ \text{PDF} + \alpha_s \end{array}$	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

0.0

120

140

32

Systematic uncertainties (1/2)

Fit bias uncertainty:

- related to the choice of the continuum background fitting function
- assumed a conservative 20% on the signal (spurious signal method)

• c tagging:

- assumed a conservative 10% uncertainty on the yields

m_{cc} (GeV)

JES and JER:

 affects the shape of the reconstructed Higgs boson candidate mass and is therefore treated as a source of shape systematic uncertainty
 whole analysis reprocessed with up and down variations

CMS Work in progress 27 fb⁻¹ (13.6 TeV CMS Work in progress 27 fb⁻¹ (13.6 TeV) Events Events 5.5 JESUp — JERUp - JES — JER JESDown JERDown 2.0 2.0 u = 127.36 GeV u = 126.49 GeV 1.5 1.5 F σ = 12.39 GeV $\sigma = 12.89 \text{ GeV}$ μ = 126.01 GeV μ = 126.28 GeV σ = 11.99 GeV σ = 12.58 GeV 1.0 1.0 F μ = 124.69 GeV μ = 126.06 GeV σ = 11.70 GeV = 12.26 GeV 0.5 0.5

120

140

160

m_{cc} (GeV)

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$ggH\to c\bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH\to b\bar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
Higgs XS PDF + α_s	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

Fit bias uncertainty:

- related to the choice of the continuum background fitting function
- assumed a conservative 20% on the signal (spurious signal method)

• c tagging:

- assumed a conservative 10% uncertainty on the yields

JES and JER:

- affects the shape of the reconstructed Higgs boson candidate mass and is therefore treated as a source of shape systematic uncertainty
 whole analysis reprocessed with up and down variations
- Parton showering and hadronization model for VBF production:
 estimated by comparing the signal acceptance of two generators: PYTHIA and HERWIG

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$gg H o c \bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
Higgs XS PDF + α_s	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

Fit bias uncertainty:

- related to the choice of the continuum background fitting function
- assumed a conservative 20% on the signal (spurious signal method)

• c tagging:

- assumed a conservative 10% uncertainty on the yields

JES and JER:

- affects the shape of the reconstructed Higgs boson candidate mass and is therefore treated as a source of shape systematic uncertainty
 whole analysis reprocessed with up and down variations
- Parton showering and hadronization model for VBF production:
 estimated by comparing the signal acceptance of two generators: PYTHIA and HERWIG

Trigger:

- estimated with trigger SFs up and down variations

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$gg H o c \bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
Higgs XS PDF + α_s	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

Fit bias uncertainty:

- related to the choice of the continuum background fitting function
- assumed a conservative 20% on the signal (spurious signal method)

• c tagging:

- assumed a conservative 10% uncertainty on the yields

JES and JER:

- affects the shape of the reconstructed Higgs boson candidate mass and is therefore treated as a source of shape systematic uncertainty
 whole analysis reprocessed with up and down variations
- Parton showering and hadronization model for VBF production:
 estimated by comparing the signal acceptance of two generators:
 PYTHIA and HERWIG

Trigger:

- estimated with trigger SFs up and down variations
- Integrated luminosity

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$gg H o c \bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
Higgs XS PDF + α_s	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

- Theoretical uncertainty on Higgs production XS:
 - uncertainty arising from
 - approximations used in perturbative calculations of QCD
 - uncertainty on the parton distribution functions (PDFs)
 - uncertainty on α_S

Source of uncertainty	$VBF H \rightarrow c\bar{c}$	$gg H o c \bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
$\begin{array}{c} \text{Higgs XS} \\ \text{PDF} + \alpha_s \end{array}$	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

Theoretical uncertainty on Higgs production XS:

- uncertainty arising from
 - approximations used in perturbative calculations of QCD
 - uncertainty on the parton distribution functions (PDFs)
 - uncertainty on α_S
- Theoretical uncertainty on $H \rightarrow c\bar{c}$ decay BR:
 - uncertainty arising from
 - higher order QCD and electroweak corrections considered in theoretical calculation
 - uncertainty on the c quark mass
 - uncertainty on α_S

Source of uncertainty	$VBF H ightarrow c \bar{c}$	$ggH\to c\bar{c}$	$VBF H \rightarrow b\bar{b}$	$ggH o b ar{b}$	Z/W+jets
Luminosity	1.4%	1.4%	1.4%	1.4%	1.4%
VBF model	8%	-	- 8%	-	-
Trigger	3%	3%	4%	1%	3%
c tagging	10%	10%	10%	10%	10%
Higgs XS QCD scale	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	$^{+0.4\%}_{-0.3\%}$	$^{+4.6\%}_{-6.7\%}$	-
Higgs XS PDF + α_s	2.1%	3.2%	2.1%	3.2%	-
Higgs decay BR	$^{+5\%}_{-3\%}$	$^{+5\%}_{-3\%}$	-	-	-

Results

Final result: expected upper limit on the signal strength μ at 95% CL with 27 fb⁻¹

- estimated with CLs method by giving as input
 - the parametric shapes modelling the signal and the background
 - the expected yields estimated for signal and peaking backgrounds from MC simulation and for the QCD multijet background from the fit to data sidebands
- most relevant systematic uncertainties taken into account

	Category	Upper Limit
	CAT0	75.88
$\mu = \frac{\sigma(VBF) \cdot B(H \to c\bar{c})}{\sigma(VBF)_{cM} \cdot B(H \to c\bar{c})_{cM}} < 30.87 @95\% CL$	CAT1	60.00
O (V DI)SM D (II V CC)SM	CAT2	40.25
	Combination	30.87

Conclusions

VBF $H \rightarrow c\bar{c}$ investigated for the **first time** at CMS

- Developed new trigger specific for this search
 - first trigger with c-tagging online
 - one of the first triggers with **ParticleNet**
 - deployed online for 2023 data-taking
- Implemented strategy to analyse 2023 data (27 fb⁻¹)
 - offline preselection similar to trigger
 - BDT for signal vs QCD background discrimination
 - signal and background modelling
 - statistical analysis for expected upper limit extraction

Results

 $\frac{\sigma(VBF) \cdot B(H \to c\bar{c})}{\sigma(VBF)_{SM} \cdot B(H \to c\bar{c})_{SM}} < 30.87 \quad @95\% \ CL$

Projections

Projection full Run-3

- expected L = 360 fb⁻¹ to be collected by CMS in 2023-2026

$$\frac{\sigma(VBF) \cdot B(H \to c\bar{c})}{\sigma(VBF)_{SM} \cdot B(H \to c\bar{c})_{SM}} < 8 \qquad @95\% \ CL$$

Competitive with VH results!

Projection HL-LHC

- expected L = 3000 fb⁻¹ to be collected by CMS until 2041

 $\frac{\sigma(VBF) \cdot B(H \to c\bar{c})}{\sigma(VBF)_{SM} \cdot B(H \to c\bar{c})_{SM}} < 3 \qquad @95\% \ CL$

 $\frac{\sigma \cdot B(H \to c\bar{c})}{\sigma_{SM} \cdot B(H \to c\bar{c})_{SM}} < 2 \qquad @95\% CL$

- reasonable to assume a $\sqrt{3}$ improvement from VH, VBF and ttH combination

Further improvements on flavour tagging performance and analysis techniques expected in the next future

angela.zaza@cern.ch

Standard Model

BSM theory - EFT

Basic premise of EFT: dynamics at **low energies** does not depend on the details of the dynamic at **high energies**

→ low energy physics can be described using an effective Lagrangian that contains only a few degrees of freedom, ignoring additional degrees of freedom present at higher energies

$$S = \int d^{\mathsf{d}}x \, \mathscr{L}(x) \quad \text{the Lagrangian density has dimension d} \quad \longrightarrow \quad [\mathscr{L}(x)] = \mathsf{d}$$
$$\mathscr{L}(x) = \sum_{i} c_{i} O_{i}(x) \qquad \stackrel{O_{i}: \text{ local, gauge invariant and Lorentz invariant}}{\text{operators}}$$

The operator dimension is denoted by \mathcal{D} , and its coefficient has dimension d- \mathcal{D}

A: scale introduced so that the coefficients $c_i^{(D)}$ are dimensionless (scale at which new physics occurs)

Standard Model EFT (SMEFT)

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{(7)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots,$$

- O_i^D : SU(3) × SU(2) × U(1) invariant operator of dimension D
- c_i^D : Wilson coefficients

BSM theory - EFT

- Switch from the k-parametrization to the one given in terms of Wilson coefficients
- It is possible to identify a one way mapping between the $\{k_i\}$ and $\{C_i\}$

 $k_i^2 = 1 + \Delta k_i$, with Δk_i a linear combination of EFT parameters

Example: $h \rightarrow bb$

$$\kappa_b^2 = \frac{\mathcal{A}^2(h \to \bar{b}b)_{\text{SMEFT}}}{\mathcal{A}^2(h \to \bar{b}b)_{\text{SM}}} = 1 + \Delta\kappa_b ,$$

$$\Delta\kappa_b = 2\,\bar{v}_T^2 \left(C_{H\square} - \frac{C_{HD}}{4} - C_{Hl}^{(3)} + \frac{C_{ll}'}{2} - \underbrace{C_{dH}}_{[T_d]_{33}} \right)$$

Only direct d=6 contribution, which is due to the operator Q_{dH} , that perturbs the Yukawa coupling

BSM theory – Two Higgs Doublet Model

- Model within the Spontaneous Flavour Violation (SFV) framework
- The Higgs sector is extended with an additional doublet

Results of this study

- Possible to have a second Higgs with Yukawa couplings of O(10⁻¹) with any up-type quark
- For instance, it is possible to have a new Higgs that couples at this strength only to the charm quarks
 When this new Higgs has a non-zero mixing angle with the SM Higgs, this allows for large deviations of O(10) to O(10⁴) to the SM charm and up Yukawa couplings consistent with measurements of flavour changing neutral currents (FCNC)

ParticleNet - architecture

- Three EdgeConv blocks allow the model to learn hierarchical jet substructures
 - for each particle the EdgeConv block identifies the k nearest neighboring particles and builds *edges* (reletionships between nearby particles)
- The learned features from all the particles are combined by a global average pooling operation, followed by a fully connected layer
- Finally, a fully connected layer with two units and a softmax function provide the output for a binary classification task (PNet was first evaluated on two jet tagging benchmarks)

Trigger SFs

Validation plots for $HLT p_T SFs$

 \rightarrow Trigger p_T SFs correct the mismatch between data and MC

Plot Data/MC

A. Zaza

Plot Data/MC

BDT for QCD bkg mitigation

Feature importance

Rank	:	Variable	:	Variable Importance
1	:	DR_HiggsVBF2	:	6.892e-02
2	:	QvsG_VBF1	:	6.812e-02
3	:	Dphi_qq_cc	:	6.620e-02
4	:	mqq	:	6.617e-02
5	:	CvsL_jetC2	:	6.540e-02
6	:	Dphi_qq	:	6.101e-02
7	:	CvsB_jetC1	:	6.093e-02
8	:	CvsB_jetC2	:	6.082e-02
9	:	Deta_qq	:	6.061e-02
10	:	DR_HiggsVBF1	:	6.022e-02
11	:	CvsL_jetC1	:	5.234e-02
12	:	jetPt_sum	:	5.184e-02
13	:	Alpha_qq	:	5.115e-02
14	:	njets	:	4.943e-02
15	:	pt_norm	:	4.683e-02
16	:	pz_4jets	:	4.195e-02
17	:	QvsG_VBF2	:	3.959e-02
18	:	jetEne_sum	:	2.846e-02

$H \rightarrow c\overline{c} vs QCD discriminator$

UL estimation

Test statisticLikelihood ratio $q_{\mu} = -2 \ln \lambda(\mu)$ $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})}$

 μ : signal strength L : likelihood function θ : nuisance parameters Counting experiment

$$L(\mu, heta) = \prod_{j=1}^{N} rac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)}$$

p-value: probability of observing a disagreement with the null hypothesis as large as the one observed in data

 $p_{\mu} = \int_{q_{\mu, \mathrm{obs}}}^{\infty} f(q_{\mu}, \mu) dq_{\mu}$

 $f(q_{\mu},\mu)$: pdf of q_{μ} under the assumption of the signal strength μ

For the calculation of the UL, the modified test statistic for upper limit is used

$$ilde{q_{\mu}} = egin{cases} -2\lnrac{L(\mu,\hat{ heta})}{L(0,\hat{ heta}(0))} & ext{if } \hat{\mu} < 0, \ -2\lnrac{L(\mu,\hat{ heta})}{L(\hat{\mu},\hat{ heta})} & ext{if } 0 \leq \hat{\mu} \leq \mu, \ 0 & ext{if } \hat{\mu} > \mu. \end{cases}$$

This way:

- the data is assumed to show lack of agreement with the hypothesized μ only if $\hat{\mu} < \mu$
- If $\hat{\mu} < 0$ (number of data events smaller than the one expected from background only because of statistical fluctuations), the ML value of μ is set to 0

UL estimation

The Upper Limit is the largest value of μ such that the p-value is larger than or equal to a fixed threshold (0.05 for 95% CL)

$$p_{\mu} = \int_{q_{\mu,\text{obs}}}^{\infty} f(q_{\mu},\mu) dq_{\mu} < 1 - \text{CL}$$

CLs method:

$$rac{p_{\mu}}{1-p_{b}} < 1-CL, ext{ with } p_{b} = \int_{q_{0}}^{\infty} f(q_{0}|\mu=0) dq_{0}$$

The CLs method is used to prevent aggressive exclusion of signal hypotheses, especially in cases where data shows fewer events than expected from bkg alone. In such cases, $1-p_b$ becomes small

Kc constraints – Likelihood fit

ttHcc - VHcc combined

