

Dipartimento Interateneo di Fisica «Michelangelo Merlin» Dottorato di Ricerca in Fisica Nucleare, Subnucleare, XXXVII Ciclo

Search for HH \rightarrow bbµµ with the CMS experiment and future Higgs boson factories

PhD Candidate: BRUNELLA D'ANZI Advisor: Prof. NICOLA DE FILIPPIS

Doctoral Thesis Defense | 2025 April 7th, Bari

Experimental introduction

• THE LHC AND THE CMS EXPERIMENT

• THE FUTURE CIRCULAR COLLIDER AND THE IDEA DETECTOR CONCEPT

"Detectors... are really the way you express yourself. To say somehow what you have in your guts. In the case of painters, it's painting. In the case of sculptures, it's sculpture. In the case of experimental physicists, it's detectors. The detector is the image of the guy who designed it." – Carlo Rubbia

THE LHC AND THE CMS EXPERIMENT

- The Large Hadron Collider (LHC) is the largest and the most powerful accelerator in the world (pp collisions)
- It reached so far energies of $\sqrt{s} = 13.6$ TeV during Run 3 (2022-now), O(1500) charged particles/event
- In 2030, LHC will evolve to the High-Luminosity phase (HL-LHC), reaching $\sqrt{s} = 14 \text{ TeV}$

- The Compact Muon Solenoid (CMS) experiment is a general purpose experiment
- It collected 138 fb⁻¹ of data during LHC Run 2 (2016-2018)
- It will collect 3000 fb⁻¹ of data during HL-LHC

THE FCC AND THE IDEA DETECTOR CONCEPT

- Future Circular Collider (FCC), a circular collider with ~91 km circumference, is a post-LHC project proposed at CERN (CEPC in China, arxiv:2312.14363).
 - Precision tests of the SM, especially Higgs self-couplings, and searches for new physics (dark sector particles, extended Higgs sectors, and new gauge bosons).
- Designed as a multi-stage plan: FCC-ee (Higgs factory, e^+e^- collisions) \rightarrow FCC-hh (energy frontier, pp collisions at $\sqrt{s} = 100 \text{ TeV}$).

- **IDEA Detector** (Innovative Detector for Electronpositron Accelerator, arxiv:2502.21223) is a generalpurpose detector concept optimized for FCC-ee phase:
 - Ultra-light drift chamber for precision tracking, and particle identification (along with Time of Flight -TOF - detectors), with minimal material budget.

Theoretical Introduction

- THE TRILINEAR HIGGS BOSON SELF-COUPLING
- DI-HIGGS SEARCHES
- BEYOND STANDARD MODEL

"If I have seen further it is by standing on the shoulders of Giants." — Isaac Netwon

HIGGS BOSON SELF-COUPLINGS

- The trilinear Higgs boson self-coupling λ_3 is a key parameter of the Standard Model (SM) of particle interactions:
 - precisely predicted theoretically
 - Scalar Higgs boson mass m_H
 - Vacuum expectation value (VEV), energy scale of the electroweak symmetry breaking v
 - \circ experimentally directly unmeasured.
- Its observation would probe, for the first time, the only unobserved part of the SM Lagrangian, the energy potential V(H) of the Higgs boson.

NOTE: The lifetime of the metastable vacuum is tens of orders of magnitude longer than the age of the Universe, making any transition to a different vacuum state irrelevant for the current cosmological timescale.

(*) λ_3 , λ_4 can be constrainted indirectly for Next-to-Leading-Order (NLO) contributions to the single Higgs production cross section.

DI-HIGGS SEARCHES

- At LHC, the HH pairs are mainly produced through <u>gluon-gluon fusion (ggF)</u> via fermionic loops
- A very small cross section (XS) σ_{ggF,HH} (SM) ~ 31 ξ
 fb, due to leading order (LO) destructive interference,
 - ~1000x smaller than single Higgs one (pb \rightarrow fb)

BRUNELLA D'ANZI

- At LHC and future HL-LHC, it is crucial to study all possible final states and to maximize sensitivity and observation potential, and rare ones need:
- Improved reconstruction (charged) object techniques (Run 3), better particle identification (PID) at FCC
- Machine learning techniques for signal to background discrimination
- Analysis with high statistics (choice of Run 2)

Higgs 2023 Conference, CMS di-Higgs non resonant searches

BEYOND STANDARD MODEL

- HH production is **highly sensitive to BSM effects**
 - via new particles decaying into HH (resonant)
 - through loop-level modifications (non-resonant, in this work).
- In CMS, current HH BSM interpretations use the Higgs Effective Field Theory approach (HEFT):
 - deviation from the SM introduce anomalous couplings kappa (e.g. κ_λ = λ₃/λ₃SM, κ_t), changing the HH XS and kinematics HH properties
 additional gluon gluon fusion (ggF) couplings (C₂, C_{2g}, C_g)
- Complementary research in different decay channels
 ↔ complementary sensitivity to couplings' variations
- So far, no BSM evidence has emerged, despite some early fluctuations later excluded with more data.

 $\kappa_{\lambda} = 0$: an enhanced cross-section due to the absence of destructive interference. $\kappa_{\lambda} \approx 2.45$: interference is minimized and the total cross-section reaches its minimum. Higher values (e.g., $\kappa_{\lambda} = 5$): increase the triangle contribution, altering the kinematics and suppressing events in the low-m_{HH} region.

BRUNELLA D'ANZI

Particle identification for future colliders

- A NOVEL PID: THE CLUSTER COUNTING METHOD
- BEAM TESTS OVERVIEW

3

- BEAM TEST ANALYSIS STRATEGY
- BEAM TEST RESOLUTION RESULTS

"Science is a way of thinking much more than it is a body of knowledge." – Carl Sagan

Drift tube

ionization

sense

ionizing track

electror

A NOVEL PID: THE CLUSTER COUNTING METHOD

- **Truncated Mean method (dE/dx)** is the traditional ٠ PID technique based on the **measurement** of the average ionization energy loss per unit length by a charged particle in a medium predominantly via Coulomb interactions (Betha-Bloch formula).
 - Large fluctuations in energy deposition Ο measurement (Landau distribution expected \rightarrow Gaussian via truncation)
 - Dependence on gas gain and cluster size 0
- Cluster Counting (dN/dx) is the innovative technique ٠ that counts individual primary ionization clusters per unit length along a particle's track.
 - It exploits the **Poisson statistics** of primary 0 ionization clusters formation
 - Robustness against fluctuations in energy 0 deposit and electronic noise
 - Insensitive to high-ionizing backgrounds like 0 γ-rays.

PhD Thesis Defense | 2025 April 7th, Bari

No K/π separation with TOF over 2 m Drift tube - 100 p onizatio

> Analytical calculations and **simulation studies** (Garfield++, GEANT4) show (with some discrepancies) that the particle separation is improved by a factor of ~ 2 with respect to the traditional dE/dx method.

cluster

Need to validate with collection and analysis of real data (main work of this PhD)!

First beam test results published in Nucl.Instrum.Meth.A 1048 (2023) 167969

BRUNELLA D'ANZI

BEAM TESTS OVERVIEW

• Study **Poisson nature of the cluster counting (CC) technique** and its

• Evaluate CC algorithm efficiency w.r.t. geometry, gas gain, electronics

Quantify **PID performance** with **dE/dx vs dN/dx**

• Identify limiting factors: e.g. space charge effects

Goals of Beam Tests

Setup & Parameters Explored

Square section drift tubes: 1.0-3.0 cm drift cell size, anode wires: 10-40
µm: identified better configurations for the available DAQ (1-1.5 cm)• Gas mixtures: He–Isobutane (90/10, 85/15, 80/20)• Gas gains: $1-5 \times 10^5$

 SPS-H8 @ CERN (Nov 2021, July 2022): muons at 165–180 GeV/c (Fermi plateau of Betha-Bloch), in this work

 PS-T10 @ CERN (Jul 2023): muons at 2–12 GeV/c (relativistic rise)

dependence on $\beta \gamma$

(sampling rate)

BRUNELLA D'ANZI

BEAM TESTS ANALYSIS STRATEGY

0 1 2

Channels

PoS ICHEP2022 (2022) 335

Gas Gain Study

Single electron pulse height distributions (average maximum voltage per event) fitted with Moyal \rightarrow used to extract **gas gain** (parameter B = Most Probable Value).

Preprocessing

- baseline normalization (first 30 ns)
- waveforms < 3 mVdiscarded as noise
- Removal of signal out of data acquisition window

- Charge effects study
- Estimate the overlap of single electron avalanches \rightarrow assess impact on gas gain and CC performance.
- Study of avalanche separation $\lambda \cdot \sin(\alpha)$, where α is the angle between track and sense wire normal: space charge suppresses gain due to overlapping avalanches increasing with angle α for inclined tracks: \rightarrow 60–75% suppression at 90/10 He-iC₄H₁₀ and few $\times 10^5$ gas gain.
 - No strong dependence on gas gain (within tested range) and sense wire diameter
 - \rightarrow Space charge corrections are necessary for accurate CC cluster reconstruction.

BEAM TESTS ANALYSIS STRATEGY

4.

5.

Finding electron (red) peak algorithms development (comparable results) :

• DERIV Algorithm:

- Based on 1st and 2nd derivatives of waveform.
- Peak identified by local extrema, curvature, and amplitude criteria.
- RTA Algorithm:

gas.

- Uses **digitized exponential templates** (rising & falling).
- Scans waveform and matches against templates.
- Iteratively subtracts matched peaks.
- Machine Learning method also tested (with CEPC team), but not optimal for FPGA implementation (slow, complex) (ACAT, Nucl.Instrum.Meth.A 1046 (2023) 167734).

Performance Scans & CC Efficiency

Parameters varied:

6.

Gas mixture (He:iC₄H₁₀: 90/10, 85/15, 80/20), Track angle, gas gain (HV), cell size wire diameter.

- Efficiency = measured clusters / expected clusters OR ratios between different drift cell size to be theory-independent
- CC efficiency slightly varies with HV (~20% steps).

Nucl.Instrum.Meth.A 1046 (2023) 167734

BEAM TEST RESOLUTION STUDY

Other Physics Observables

• Drift velocity: estimated from first cluster drift time window acceptance, compatible with expectations ($v_{drift} \approx 2.5 \text{ cm}/\mu \text{s}$ for Helium-based drift chambers)

Space charge effects

- Suppress signal at small angles ($\alpha = 0$).
- ~ 10 clusters lost per 100 ns at high drift times.

Corrections Factor

BRUNFIIA D'ANZI

- Clustering efficiency corrected for:
 - Attachment, recombination, and space charge effects.
- DERIV correction example (gas 80/20):
 - Linear slope fit applied to account for timedependent cluster loss.

BEAM TEST RESOLUTION RESULTS PoS ICHEP2024 (2025) 1067 PoS ICHEP2024 (2025) 1104

35

histogram

Std Der

Dataset

- Muons at **165 GeV** (CERN, 2021, Fermi plateau)
- Drift tubes: 1 cm cell, 20 µm wire (high statistics)
- He:lsoB 90/10 gas mixture, 2 m tracks
- Same hits used for both dE/dx and dN/dx \rightarrow direct comparison

Results

- dE/dx resolution: \sim 5.7% (with 80% truncated mean)
- dN/dx resolution: $\sim 3\% \rightarrow \sim 2x$ better
- Resolution vs track length:
 - dE/dx \propto L^{-0.37}
 - $dN/dx \propto L^{-0.5} \rightarrow better scaling$

Gas Mixture Trade-offs consideration:

- Argon: more ionization, better resolution, more multiple scattering
- Helium: less ionization, large time separation, faster drift, better for high-rate experiments

PhD Thesis Defense | 2025 April 7th, Bari

BRUNELLA D'ANZI

Track seeding technique for the CMS experiment

- THE CELLULAR AUTOMATON (CA) SEEDING ALGORITHM
- CA EXTENSION TO OUTER TRACKER
- CA EXTENSION PERFORMANCE

"The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny...'" — Isaac Asimov

THE CA SEEDING ALGORITHM

- The Cellular Automaton (CA) is an algorithm designed for parallel architectures, can be used either as the main track finder algorithm or as a tracking seeding step to another algorithm (offline or online reconstruction) → currently using pixel detector.
- CA is inspired by the Conway's Game of Life classic simulation where each square cell evolves over time based on the state of its neighbors similar to how track signals (hits) evolve into track segments.

- CA reconstructs tracks from hits using a graph-based approach.
- Tracks are seeded through CA doublets \rightarrow triplets \rightarrow quadruplets.
- Cells (doublets) evolve by connecting to geometrically compatible neighbors ($\Delta z, \Delta \phi$, etc.).

BRUNELLA D'ANZI

CA EXTENSION TO OUTER TRACKER

Motivation

- Momentum resolution improvement
- Fake tracks reduction
- **Recover pixel off failures** \rightarrow benefits for all analyses

Data Flow and Run 3 (HLT) Context (running on hetherogeneous architectures)

- Input: Structure of Arrays (SoA) reconstructed hits from pixel detector and 2D matched strip hits as merged collection for CA doublet search.
- Global unpacking of strip clusters (CPU running) required for the CA extension.
- Impact on event processing throughput: 4% decrease due to strip cluster unpacking (other tracking users would benefit from it).

Timing event processing with (without) strip unpacking on the right (left)

CMSSW PR #47090

CMSSW PR #47271

BRUNELLA D'ANZI

CA EXTENSION TO OUTER TRACKER

CMSSW PR #47090 CMSSW PR #47271

Motivation

- **Momentum resolution** improvement
- Fake tracks reduction
- **Recover pixel off failures** \rightarrow benefits for all analyses

Data Flow and Run 3 (HLT) Context (running on hetherogeneous architectures)

- Input: Structure of Arrays (SoA) reconstructed hits from pixel detector and 2D matched strip hits as merged collection for CA doublet search.
- Global unpacking of strip clusters (CPU running) required for the CA extension.
- Impact on event processing throughput: 4% decrease due to strip cluster unpacking (other tracking users would benefit from it).

Graph Construction and Optimization

- CA algorithm requires layer adjacency graph for hit pairs ($18 \rightarrow 50$ pairs).
- Careful selection of layer pairs to optimize GPU containers sizes without exceeding memory limits (\sim 2,000,000 doublets - acceptable in heavy-ion runs). **Customized Sequential Layer IDs**
 - Default detector ID leaves empty memory allocations for strips, especially for TIDs.
 - Solution: **Custom sequential ID** mapping to efficiently process consecutive layers.

BRUNELLA D'ANZI

PhD Thesis Defense | 2025 April 7th, Bari

-100

-200

BPix3

FPix2

FPix3

CA EXTENSION PERFORMANCE

Optimize CA parameters to maximize efficiency and minimize fake rates.

- For the current pixel-only CA implementation, already integrated in 2025 data-taking a slight efficiency improvement in HLT full tracks (simulated to reconstructed tracks association)
- For the CA+extension parameter optimization:
 - First Approach: simulated track parameters distributions study
 - Second Approach: Multi-Objective Particle Swarm Optimization (MOPSO) is a swarm of agents in the parameter space in multiple iterations exploring the solution space for the best solution found by the swarm (pareto front) and the local best solution of each agent

Performance on simulated ttbar events with Run 3 pileup conditions. First Configuration: Require at least pixel triplets + pixel-strip quadruplets vs pixel only triplets for seeding:

- Fake+duplicate rate <u>decreased by 50%</u> for track seeding.
- Efficiency <u>decreased by 10%</u>.
- <u>Improved</u> momentum resolution by 10%.

Second Configuration: Require at least triplets (pixels-only, pixel+strip,strips-oly) vs pixel only triplets, most promising results (no need of HLT doublet recovery tracking iteration)!

 HLT efficiency of track seeds increases, along with <u>HLT full tracks by 20%</u> in pixel hole failure regions (plot on the right)

BRUNELLA D'ANZI

CMS muon track reconstruction performance

- CMS OFFLINE TRACKING
- RUN 3 MUON TRACK RECONSTRUCTION PERFORMANCE
- TRACKING PERFORMANCE RESULTS

"Physics is about questioning, studying, probing nature. You probe, and, if you're lucky, you get strange clues." - Lene Vestergaard Hau

CMS OFFLINE TRACKING

- Precision tracking is essential for accurate charged particle momentum measurement, which impacts various CMS analyses.
- Track reconstruction is used in nearly every reconstruction element, including vertex reconstruction, flavor jet tagging, and pileup removal.

Run 3 offline CMS Tracking Strategy (same Run 2):

- 1. Seed Generation: Uses pixel hits for accurate seeding.
- 2. Pattern Recognition: Kalman filter-based propagation through tracker layers.
- **3. Track Fitting:** Inside-out and outside-in Kalman filters with a smoothing stage.
- **4. Track Selection:** Based on quality flags (hits, χ_2 , vertex distance).

Iterative Tracking Process: tracks with higher p_T are reconstructed first, with more complex tracks (low p_T , displaced) tackled in later iterations.

Run 3 Tracking Performance Developments:

- Muon Tracking Efficiency Framework: 50% reduction in CPU time processing via Apache Spark-based approach (CMS-DP-2022-046), inclusion of systematics.
- Muon Tracking Performance: Assessed via the produced coously known resonance $Z \rightarrow \mu^+\mu^-$ using the data-driven tagand-probe technique from 2022-2023 (CMS-DP-2024-054, PoS ICHEP2024 (2025) 931).
- Detector Failures: Observed in 2023, affecting tracking efficiency (~99% no longer consistent between data and Monte Carlo simulations, scale factors needed).

BRUNELLA D'ANZI

RUN 3 MUON TRACK RECO PERFORMANCE

1. Define and Classify Probes: loose criteria, reconstructed with muon system (standalone muon probe).

2. Passing Probes: Verify **standalone probes** match tracker tracks in a cone (All Tracks or Tracker-only Seeded).

3. **Define Tags**: Tight identification selection, reconstructed using both muon chambers and the tracker.

4. **Pairing:** Opposite charge sign muons, invariant mass near Z. Exclude interchangeable pairs.

5. Measured Efficiency (ϵ): Fraction of pairs with probes passing tighter selection. Background subtraction via simultaneous fit procedure.

6. Simultaneous fit to the signal and the background tag-probe invariant mass (for both passing and failing probes, data and Madgraph DY MC). <u>Tracker momentum</u> is used for passing probes and tag muons to <u>improve mass resolution</u>.

7. Fake Matching Rate ϵ_F : Before probes classification, remove tracks near Z mass (40-200 GeV).

BRUNELLA D'ANZI

TRACKING PERFORMANCE RESULTS POSICHEP2024 (2025) 931

Tracking Matching Inefficiency $(\mathbf{1} - \boldsymbol{\varepsilon}_{M})$

- Estimated from the **tail (upper 20%) of matching variable distributions**: ΔR , $\Delta \eta$, and $\Delta p_T/p_T$ between standalone muons and inner tracks.
- Max inefficiency (~5%) observed in high- p_T forward region [120, 200] GeV.
 - Generator Truth vs. Tag & Probe
- Generator-level muons from $Z \rightarrow \mu^+ \mu^-$ used as a cross-check.
- Same selection strategy applied as for reconstructed muons.
- Confirms T&P performance, validating measured efficiencies across 2022–2023 data periods.

2. Tracking Performance Results (ε_{T})

- Efficiency ($\boldsymbol{\varepsilon}_{T}$) measured vs $\boldsymbol{\eta}, \boldsymbol{\phi}, \boldsymbol{p}_{T}$, and number of Primary Vertices.
- All Tracks (using muon system info) outperform Tracker-only seeded tracks, esp. in problematic η - ϕ regions since July 2023 ($\phi \sim -1$, $-1.5 < \eta < -0.2$).
- Displayed uncertainties include statistical and matching probability $\boldsymbol{\varepsilon}_{M}$ contributions, often smaller than marker size. Systematics related to fit functions can be significant.

BRUNELLA D'ANZI

6

CERN Summer Student Report Proposal for INFN Interactive Analysis Facility Use-Case Master's student thesis

HH(bbµµ) Run 2 analysis

- EVENT PRESELECTIONS
- CORRECTIONS TO DATA AND SIMULATION
- DI-HIGGS SIGNAL REGION
- CONTROL REGIONS
- MACHINE LEARNING FOR DI-HIGGS SEARCH
- STATISTICAL ANALYSIS

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." — Richard Feynman

EVENT PRESELECTION

- Collision events passed the single-muon triggers (online loose Identification & isolation trigger muon object found with $p_T \ge 24 \text{ GeV}$ (2016/2018) and $\ge 27 \text{ GeV}$ (2017)).
- The first step consists in selecting only events of interest \rightarrow Preselection: events with at least one good primary iteraction vertex restricted along the z-axis and transverse plane ($z_{PV} < 24$ cm, $r_{PV} < 2$ cm, high number of degrees of freedom > 4).

Have two opposite-charge sign muons (ℓ_1, ℓ_2) with

- Transverse momentum $p_T > 20$ GeV, $|\eta| < 2.4$, medium identification criteria, $|d_{xy}| < 0.5$, $|d_z| < 1.0$
- Relative Particle-Flow Isolation requirement ($\Delta R = 0.4$) < 0.15 (Final State Radiation photons corrected)
- At least one muon (ℓ_1 or ℓ_2) matched ($\Delta R < 0.1$) with the trigger object:
 - $p_T \ge 26$ GeV (2016/2018) and ≥ 29 GeV (2017)to ensure that it lies on the single muon trigger plateau
 - Tight muon identification criteria
 - Event with exactly one tight muon pair

To remove the low mass resonances, the dilepton invariant mass is $40 < m_{\ell\ell} < 200$ GeV (p_T GeoFit correction applied)

3. Electrons veto: pT > 20 GeV, $|\eta| < 2.5$, MVA WP(90%), relative isolation ($\Delta R = 0.3$) < 0.15, $|d_{xy}| < 0.5$, $|d_z| < 1.0$

Particle-Flow reconstructed jets $p_T > 25$ GeV, $|\eta| < 2.5$ (2.4 for 2016), Loose pileup jet Identification criteria for jets $p_T < 50$ GeV

- Loose (Tight) jet Identification criteria for 2016 (2017,2018), Cleaned wrt. muons/FSR: $\Delta R(j, \mu/\gamma) > 0.4$
- Highest AK4 b-tagged (DeepJet algorithm) jets pair invariant mass no stats for boosted category regime

BRUNELLA D'ANZI

4.

2.

CORRECTIONS TO DATA AND SIMULATION

Corrections to data and Simulation ensure simulation models signal & background accurately

• Essential for analyses using MC-driven backgrounds like in this case

Muon Efficiency Corrections (T&P Method)

- Tag & Probe method applied on $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ events
- Used to derive data-to-MC Scale Factors (SFs) as a function of p_T and η for Tracking Efficiency, Reconstruction & identification, Isolation and Trigger Efficiency ~1% correction typically, up to ~2% at high $|\eta| \epsilon = \epsilon_{trk} \cdot \epsilon_{ID|trk} \cdot \epsilon_{ISO|ID} \cdot \epsilon_{trig|ISO,ID}$

Rochester Corrections

Muons

• Applied to **both data and simulation** including **momentum scale correction** and **extra smearing in simulation** for resolution matching with data

• Aligns Z peak in di-muon invariant mass to PDG value

GeoFit Correction based on $\mathbf{\eta}$ and d_{xy} for muon p_T

- Tracks show residual transverse displacement d₀ wrt primary vertex/beamsport leading to degradation of mass resolution
- The correction is the proportionality factor of $d_0 \propto \Delta p_T/R^2$
- Charge-dependent, opposite for μ^+ vs μ^-
- Tuned for each Run 2 year (2016, 2017, 2018)
- Introduced in Run 2 H $\rightarrow \mu\mu$ CMS search
- Improves di-muon mass resolution by 3–10%

BRUNELLA D'ANZI

Pileup Reweighting

• MC samples produced with approx. pileup profile

Event weight

• Reweighting applied so MC matches data PU distribution

Event Scaling MC to data luminosity

Jets

- L1FastJet correction Jet Energy Resolution smearing (simulation) : mitigates pileup effects (extra tracks & calorimetric energy)
- Jet Pileup track removal: discard tracks from pileup vertices
- Jet Energy Corrections (L2 + L3): applied vs. η and pT to match particlelevel jets
- Residual Jet Energy Corrections (data only) from balance in:
 - Dijet, multijet, γ +jets, Z+jets events

B-tag Score Reshaping (since MVA-based analysis)

CORRECTIONS TO DATA AND SIMULATION

- leading to degradation of mass resolution
- The correction is the proportionality factor of d₀
- Charge-dependent, opposite for μ^+ vs
- Tuned for each Run 2 year (2016, 2017, 2018)
- Introduced in Run 2 H $\rightarrow \mu\mu$ CMS search
- Improves di-muon mass resolution by 3–10%

BRUNELLA D'ANZI

- Backgrounds (bkgs) are those SM processes whose
 signature mimics the same of the signal
- DY is the most significant reducible background (2 leptons, no resonant di-jets) at this selection step

DI-HIGGS SIGNAL REGION

• Final state: 2 high-pT, isolated muons + 2 b-jets

BRUNELLA D'ANZI

• Previous preselections are motivated by **generator level studies**: from Higgs decay at rest ($p_T^H \approx 0$) \rightarrow muons emitted back-to-back with expected $p_T \sim 60$ GeV

- Signal Region (SR) are the selections where the signal is most likely to be present and the SM background is reduced:
- To suppress some backgrounds like ttbar and non resonant dibosons: 70 < m_{bb} < 140 GeV
- Di-muon Higgs candidate: $115 < m_{\ell\ell} < 135$ GeV to be decorrelated from bbZZ and bbWW searches (narrow width of approximately 2.49 GeV for Z boson and broad and countinous for W $\rightarrow \mu v$).

Background sample	Reaction	$\mathbf{Generator} + \mathbf{PS}$	Cross Section $\cdot BR$ (pb)	
	Drell-Y	an		
DY+ jets (10 GeV $< M_{jj} <$ 50 GeV)	$Z \rightarrow ll + jets$	AMCNLO (FXFX) + Pythia8	18610	
$\mathrm{DY+jets}~(M_{jj} > 50~\mathrm{GeV})$	$Z \rightarrow ll + jets$	AMCNLO (FXFX) + Pythia8	5954	
	Тор			
$t\overline{t}$	$t\overline{t} \rightarrow +2l+2\nu$	Powheg + Pythia8	86.61	
	$t\overline{t} ightarrow 2l + 2q$	Powheg + Pythia8	358.57	
Single Top	tW, top (antitop)	Powheg + Pythia8	35.9	
	t-channel top	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	136.02	
	s-channel (lepton decays)	AMCNLO + Pythia8	3.40	
tZq	tZq	AMCNLO + Pythia8	0.0758	
ttV	$t\bar{t}W \rightarrow l\nu + jets$	$\begin{array}{l} {\rm AMCNLO} \ ({\rm FXFX}) + {\rm mad-} \\ {\rm spin} + {\rm pythia8} \end{array}$	0.2001	
	$t\bar{t}Z \rightarrow 2l + 2\nu$	AMCNLO + pythia8	0.2529	
$t\bar{t}$ +X	TTTT	AMCNLO + Pythia8	0.0091	
	TTTW	AMCNLO + Pythia8	0.00073	
	TTWW	AMCNLO + Pythia8	0.0070	
	TTTJ	AMCNLO + Pythia8	0.000039	
	SM Higgs Bac	ckground		
ggF (M125)	$gg ightarrow H ightarrow \mu \mu$	Powheg + Pythia8	0.01057	
VBF (M125)	$q\overline{q} ightarrow H ightarrow \mu \mu$	Powheg + Pythia8	0.0008228	
$W^{+}H$ (M125)	$q\overline{q} \to W^+ H \to \mu\mu + X$	Powheg + Pythia8	0.0001858	
$W^{-}H$ (M125)	$q\overline{q} \rightarrow W^-H \rightarrow \mu\mu + X$	Powheg + Pythia8	0.0001164	
ZH (M125)	$q\overline{q} \rightarrow ZH \rightarrow \mu\mu + X$	Powheg + Pythia8	0.0001923	
ggZH (M125)	$gg \rightarrow ZH \rightarrow \mu\mu + X$	Powheg + Pythia8	2.0×10^{-6}	
ttH (M125)	$gg ightarrow t \overline{t} H ightarrow \mu \mu + X$	Powheg + Pythia8	0.0001103	
bbH (M125)	$gg \rightarrow bbH \rightarrow \mu\mu + X$	amcatnlo + Pythia8	0.0001059	
THQ (M125)	$tHq \rightarrow \mu\mu + X$	Madgraph + Pythia8	1.612×10^{-5}	
THW (M125)	$tHW \rightarrow \mu\mu + X$	Madgraph + Pythia8	3.292×10^{-6}	
	Boson, Dil	boson		
bbZ	$Z+b\bar{b}\to X+b\bar{b}$	AMCNLO + pythia8	45.9	
Z + (0,1,2) jets	$Z \rightarrow l\nu + jets$	AMCNLO + pythia8	45.0	
W + (0,1,2) jets	$W \rightarrow l\nu + jets$	AMCNLO + pythia8	12.178	
VV	$WW \rightarrow 2l + 2\nu$	Powheg + Pythia8	12.178	
	$WZ \rightarrow 3l + \nu$	Powheg + Pythia8	4.102	
	WZ $WZ \rightarrow 2l + 2q$ 2l2q	$\begin{array}{l} {\rm AMCNLO} \ ({\rm FXFX}) + {\rm mad-} \\ {\rm spin} + {\rm pythia8} \end{array}$	5.606	
	$ZZ \rightarrow 2l + 2\nu$	Powheg + Pythia8	0.5644	
	$ZZ \rightarrow 2l + 2q$	$\begin{array}{l} {\rm AMCNLO}\;({\rm FXFX}) + {\rm Mads}\\ {\rm spin} + {\rm pythia8} \end{array}$	3.224	
	$ZZ \rightarrow 4l$	Powheg + Pythia8	1.256	
$gg \rightarrow ZZ$	$gg \rightarrow ZZ(2e2\mu, 2\mu 2\tau, 2e2\tau)$	MCFM701 + Pythia8	0.00318	
$gg \rightarrow ZZ(2e2\mu, 2\mu 2\tau, 2e2\tau)$ MCFM701 + Pythia8		0.00318		
	$gg ightarrow ZZ(4\mu, 4 au)$	MCFM701 + pythia8	0.00157	
	$gg \rightarrow ZZ(2\mu 2 u)$	MCFM701 + pythia8	0.00149	
$q\bar{q} \rightarrow ZZ$	$q\bar{q} \rightarrow ZZ$ $q\bar{q} \rightarrow ZZ$ Powheg + Pythia8		1.256	
	Triboso	on		
VVV	WWW	AMCNLO + Pythia8	0.2086	
	WWZ	AMCNLO + Pythia8	0.1651	
	WZZ	AMCNLO + Pythia8	0.05565	
	777	AMCNLO + Pythia8	0.01398	

DI-HIGGS SIGNAL REGION

Background sample	Reaction	Generator + PS	(pb)
	Drell-Ya	an	
${ m DY+~jets}~(10~{ m GeV} < M_{jj} < 50~{ m GeV})$	$Z \rightarrow ll + jets$	AMCNLO (FXFX) + Pythia8	18610
DY +jets (M_{jj} > 50 GeV)	$Z \rightarrow ll + jets$	AMCNLO (FXFX) + Pythia8	5954
Signal region	h blinded to re	eal data due t	0 102
- J	CMS policy		
			0.00157
			0
			[]
		AMCNLO + Pythia8	5565

BRUNELLA D'ANZI

CONTROL REGIONS

Control Regions (CRs): the main bkgs are estimated in regions far away (or thogonal) from the SRs:

- High purity of the bkg \rightarrow high probability to find the bkg
- Low signal contamination \rightarrow low probability to find signal
- From CRs scale factors (SFs) are (eventually) extracted and applied to SRs

Validation Regions (VRs): before applying SFs to the SRs, the estimate is validated \rightarrow VRs are kinematically between CRs and SRs

CR Higgs to Muon Pairs + at least two b-jets (check for lepton observables):

- 1. Di-muon mass in the Higgs window (115 $< m_{\ell\ell} \! < \! 135 \; \text{GeV}$).
- 2. b-jet mass outside the Higgs range ($m_{bb} < 70 \; \text{GeV}$ or $m_{bb} > 140 \; \text{GeV}).$
- 3. Main Background: Z + jets and Zbb production.

CR Higgs to b-jets (check jet observables):

- 1. Di-muon mass outside Higgs mass window (m_{\ell\ell} < 115 GeV or m_{\ell\ell} > 135 GeV).
- 2. b-jet mass within the Higgs window (70 < m_{bb} < 140 GeV).

CR Muon Pairs and Two b-jets Sidebands:

- 1. Di-muon mass outside the Higgs window (m_{\ell\ell} < 115 GeV or m_{\ell\ell} > 135 GeV).
- 2. b-jet mass outside the H \rightarrow bb window (m_{bb} < 70 GeV or m_{bb} > 140 GeV).
- 3. Double-check lepton and jet observables.

CONTROL REGIONS

BRUNELLA D'ANZI

MACHINE LEARNING FOR DI-HIGGS SEARCH

- Use **machine learning** to **enhance signal/background separation** in the HH signal region. **Several Algorithms Tested**: Neural Networks (NNs), Boosted Decision Trees (BDTs), Random Forests (RF).
- Strategy for **optimizing the hyper-parameter of binary classifiers for rare di-Higgs searches** in Keras by choosing one or more metrics (e.g. efficiency times purity) – Lighting talk at ACAT, J.Phys.Conf.Ser. 2438 (2023). SM signal

optimization.	

Parameter	Explored Values
Inputs	Lepton/jet (p_T , η , b-tag score, b-tag WPs)/H/HH(p_T , m)
Dropout rate	10%, 20%, 30%, 40%
Topologies	$30:20:10, 21:13:8, 10:10:10:10, 50:50:50:50, \ldots$
Early stopping	50, 100, 600, 3000 epochs
Optimizers	SGD, Adam, Adagrad, AdaDelta, RMSprop
Batch size	5, 32, 64, 128, 786
Activation functions	ReLU, SeLU
Loss scaling	XS (process cross-section), event weights, none

BRUNELLA D'ANZI

Artificial Neural Network (ANN):

- Best suited for capturing complex, multidimensional correlations in a high-dimensional phase space.
- No overfitting observed.
- Feature importance and correlation matrix for feature study.

Efficiency: fraction of true signal events that are correctly classified as signal

• **Purity:** the fraction of true signal events in the total number of events predicted as signal

STATISTICAL ANALYSIS

The analysis uses **binned distributions of NN outputs** per each physics process to **quantify the likelihood of an event being signal-like**, **optimizing signal-background separation**. **Modeling the Hypotheses:**

- 1. Background only hypothesis: Based on SM simulations for background processes.
- Signal+background hypothesis: Includes both signal (SM or HEFT) and background predictions.

Binned Analysis:

1. Data divided into bins (10 bins for statistical stability), each reflecting different signal-to-background ratios.

Likelihood Construction:

- 1. Compares observed event counts with predictions under both hypotheses.
- **2.** Asimov Dataset used for test statistics in a blind analysis.
 - the median expected data for which the yields of all data samples are set to their expected values and the nuisance parameters are set at their nominal value
- **3.** Systematic uncertainties: detector effects, theoretical model uncertainties, and other sources are incorporated as nuisance parameters in the likelihood.
- The uncertainties are propagated through the DNN score prediction with shifts of 1σ from the nominal values for each input variable, resulting in a range of output distributions that for each event is N(Inputs) [1 + 2 N(InputUncertainties)]
- Impact of the systematics uncertainty on the uncertainty on the parameter of interst (POI) checked

Theoretical and experimental systematics

Process	Cross Section (pb)	Order	+QCD scale unc. (%)	-QCD scale unc. (%)	+(PDF+ α_S) unc. (%)	-(PDF $+\alpha_S$) unc. (%)
DY+jets	18610	NLO (QCD) + NLO (EWK)	+20.0	-20.0	+10.0	-10.0
tt	83	NNLO (QCD)	+20.5	-30.0	+21.0	-21.0
bbZ	45.9	NLO (QCD)	+20.0	-20.0	+10.0	-10.0
ggH	48.58	N3LO $(QCD) + NLO (EWK)$	+4.6	-6.7	+3.2	-3.2
VBF	3.782	NNLO $(QCD) + NLO (EWK)$	+0.4	-0.3	+2.1	-2.1
WH	1.373	NNLO $(QCD) + NLO (EWK)$	+0.5	-0.7	+1.9	-1.9
$qq \to ZH$	0.761	NNLO $(QCD) + NLO (EWK)$	+0.5	-0.6	+1.9	-1.9
$\mathrm{gg} \to \mathrm{ZH}$	0.123	NLO (QCD) + NLO (EWK)	+25.1	-18.9	+2.4	-2.4
ttH	0.507	NLO (QCD) + NLO (EWK)	+5.8	-9.2	+3.6	-3.6
bbH	0.488	NNLO (QCD)	+20.2	-23.9	_	
tHq	0.074	NLO (QCD) + NLO (EWK)	+6.5	-14.9	+3.7	-3.7
tHW	0.015	NLO (QCD) + NLO (EWK)	+4.9	-6.7	+6.3	-6.3

			Uncertainty Type	2016 (%)	2017 (%)	2018 (%
Source	Production Process	Magnitude (%)	Luminosity	2.6	2.3	2.5
${\rm BR}(H\to \mu\mu)$	All	1.23	Pileup reweighting	shape	shape	shape
${\rm BR}(H\to bb)$	All	1.5	Trigger	shape	shape	shape
$BR(H \to WW)$	All	1.2	Leptons ID,ISO, trig, reco efficiency	shape	shape	shape
$BR(H \to \tau \tau)$	All	1.6	Jet energy scale (JES)	shape	shape	shape
$BR(H \to ZZ \to 4l)$	All	1.5	Jet energy resolution (JER)	shape	shape	shape
			B-tagging score	shape	shape	shape

BRUNELLA D'ANZI

STATISTICAL ANALYSIS

The analysis uses **binned distributions of NN outputs** per each physics process to **quantify the likelihood of an event being signal-like**, **optimizing signal-background separation**. **Modeling the Hypotheses:**

- **1. Background only hypothesis**: Based on SM simulations for background processes.
- Signal+background hypothesis: Includes both signal (SM or HEFT) and background predictions.

Binned Analysis:

1. Data divided into bins (10 bins for statistical stability), each reflecting different signal-to-background ratios.

Likelihood Construction:

- 1. Compares observed event counts with predictions under both hypotheses.
- **2.** Asimov Dataset used for test statistics in a blind analysis.
 - the median expected data for which the yields of all data samples are set to their expected values and the nuisance parameters are set at their nominal value
- **3.** Systematic uncertainties: detector effects, theoretical model uncertainties, and other sources are incorporated as nuisance parameters in the likelihood.

Test Statistic:

- profile likelihood ratio quantifies data agreement with each hypothesis and used to set
- a 95% Confidence Level (CL) upper limit on the di-Higgs signal strength
- $\mu = \sigma^{\text{exp}}(\text{HH}) / \ \sigma^{\text{SM}}(\text{HH})$ via Asymptotic Approximations:
- Wald's Theorem: For large sample sizes, the test statistic follows a non-central χ^2 distribution.

Signal Strength (μ)	Run 2 combined (137 fb^{-1})	Run 3 (500 fb^{-1})	HL-LHC (3000 fb^{-1})
2.5% quantile $(\mu - 2\sigma)$	84	44	18
16.0% quantile $(\mu-1\sigma)$	116	61	25
50% quantile (μ)	177	93	38
84% quantile $(\mu + 1\sigma)$	275	144	59
97.5% quantile $(\mu+2\sigma)$	329	171	70

The signal strength is typically assumed to improve according to the square root of the integrated luminosity \sqrt{L} . This is because the statistical uncertainty on the number of signal events scales with the square root of the number of events, and this is proportional to the luminosity.

Conclusions

7

• SUMMARY AND FINAL CONCLUSIONS

SUMMARY AND FINAL CONCLUSIONS

Results of the gluon-gluon fusion non-resonant di-Higgs production in HH \rightarrow bbµµ using \sqrt{s} =13 TeV proton-proton collisions collected by the CMS experiment during Run 2 of the LHC:

- For the first time inside an experimental collaboration, using full simulation and reconstruction algorithms.
- A multivariate approach using artificial neural networks was developed to improve the sensitivity
- Testing both SM and BSM scenarios (HEFT): 95% CL upper limit on signal strength with full Run 2 and projections for HL-LHC (3000 fb⁻¹) showing to be valuable for inclusion in a combination with other channels to improve the overall HH sensitivity.

2.

Results of tracking performance using \sqrt{s} =13.6 TeV proton-proton collisions collected by the CMS experiment during Run 3 of the LHC and tracking seeding algorithm developments

- Muon Tracking performance evaluation improved by including systematics, generator level truth study and new refined Tag and Probe procedure (50% CPU processing time scale)
- Reconstruction of charge particle track seeding algorithm, the CA, has been improved and more robust against detector aging, with the extension to outracker information, leading to a 20% efficiency gain, 50% reduction in fake tracks if using CA autotuner

A novel particle identification technique is proposed in a drift chamber for future collider detectors.

• A novel cluster counting technique for particle ID was developed for future colliders (e.g., FCC, CEPC), showing a 2 times improvement in charged particle separation (muons) under high pileup conditions

BRUNELLA D'ANZI

Thank you for the attention

SPECIAL THANKS TO THE CMS DI-HIGGS, CMS TRACKING AND R&D FCC BARI & LECCE WORKING GROUPS!

TO UNIBA AND INFN FOR THE MANY THANKS EXPERIENCES RELATED TO THIS RESEARCH!

BACKUP

DERIV AND RTA PERFORMANCE

Number of Electron Peaks Distribution

Data waveform recorded for a 1 cm drift cell with a 10 μ m sense wire diameter, a 45° track angle, a sampling rate of 2 GSa/s, and a He/iC4H10 90/10 gas mixture for muon beam momentum at 165 GeV/c. The DERIV algorithm (left) and RTA algorithm (right) are used for electron peak identification, with cluster peaks indicated by blue arrows and electron peaks by red arrows. Line shapes are showing behaviours of DERIV parameters.

BRUNELLA D'ANZI

PERFORMANCE SCANS

Clusters Finding Efficiency 1 cm cell size Drift Tubes 180 GeV Clusters Finding Efficiency 1 cm cell size Drift Tubes 180 GeV Clusters Finding Efficiency 1 cm cell size Drift Tubes 180 GeV 1.2 Measured Average Number of Clusters / Expected Number of Clusters .2 Measured Average Number of Clusters / Expected Number of Clusters Measured Average Number of Clusters / Expected Number of Clusters 1.1 1.1 He:IsoB 90/10 He:IsoB 85/15 He:IsoB 80/20 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 He:IsoB 80/20 He:IsoB 80/20 He:IsoB 90/10 He:IsoB 90/10 0.5 0.5 0.5 0.4 12 20 10 14 16 18 0.4₀ 5 10 20 -10 -5 0 15 60 10 20 30 40 50 %(IsoB) in the He:IsoB Gas Mixture HV Configuration (Nom - 10V) to (Nom + 20V) Track Angle (deg)

PERFORMANCE SCANS

SEPARATION POWER DEFINITION

In Helium-based gas mixtures, the signals generated by ionization events in a gas detector can be spread in time on the order of a few nanoseconds. Utilizing fast read-out electronics facilitates efficient identification of these signals. By counting the number of ionization events per unit length (dN/dx), particles can be separated and identified with superior resolution compared to the conventional method based on ionization per unit length (dE/dx). The separation power for two particles, labeled p_1 and p_2 , with different masses but the same momentum, can be evaluated using the following relation:

$$n_{\sigma}^{E} = \frac{\Delta p_1 - \Delta p_2}{\langle \sigma_{p_1, p_2} \rangle},$$

where Δp_1 and Δp_2 are the measured deposited energies, and σ_E is the resolution in the ionization measurement (energy resolution), represented by the variance of the Gaussian distribution of the truncated mean values. The term $\langle \sigma_{p_1,p_2} \rangle$ is the average of the two resolutions, given by:

$$\langle \sigma_{p_1,p_2} \rangle = \frac{\sigma_{E,p_1} + \sigma_{E,p_2}}{2}.$$

BRUNELLA D'ANZI

FEATURE IMPORTANCE AND CORRELATION MATRIX

BRUNELLA D'ANZI

ANN input variable

B-TAGGING ALGORITHMS IN CMS

DeepJet (small R, AK4)

- Low-level information directly in a DNN to tag jets
- Jet as a list of particles lista di particelle (CNN-1D)
- Tagging heavy quarks and separate quark-gluons in one go

PhD Thesis Defense | 2025 April 7th, Bari

41.9 fb⁻¹ (13 TeV, 2017)

STANDARD MODEL OF PARTICLE PHYSICS

BRUNELLA D'ANZI

THE LHC TIMELINE

LHC / HL-LHC Plan

IDEA DETECTOR CONCEPT

It would operate at four center of mass energies:

• Z boson mass,

BRUNELLA D'ANZI

- the WW production threshold,
- the Z-Higgs associated production
- the top quark pair production threshold.

At the Z resonance, the bunch spacing will be of 20 ns at FCC-ee.

SM AND BSM HIGGS/DI-HIGGS CROSS SECTIONS

CONTROL REGIONS

Transverse Momentum Discrepancies:

- Observed discrepancies in p_T for leading muons and b-jets, especially at high pT values.
- High p_T jets are overestimated in simulations due to missing higher-order corrections and parton shower modeling.

b-tagging Discrepancies:

BRUNELLA D'ANZI

- Differences between data and MC in b-tagging score distributions, especially at high p_T for b-jets.
- However, these discrepancies are minimized by the ANN training that uses the full set of inputs.

Impact on the DNN in the Sideband CR:

 the data and MC distributions exhibit deviations from 50% maximum to 30%-40%, primarily in the extreme regions of the ANN score (near 0 and 1). - systematic uncertainties in background modeling contribute; the extreme score regions correspond to highly signal- or background-like events, making them more sensitive to imperfections in the modeling of input variables.

The examination of individual input feature distributions suggests that mismodeling effects in variables such as jet and lepton transverse momentum spectra and b-tagging discriminators propagate to the ANN output, amplifying the observed differences in these regions.

UNCERTAINTIES

1.Statistical Uncertainties:

- 1. Depend on data size (e.g., Poisson fluctuations).
- 2. Can be reduced with more data.

2.Systematic Uncertainties:

- 1. Theoretical Uncertainties: Associated with model assumptions and predictions.
- 2. Experimental Uncertainties: Result from detector performance and measurement precision. Systematic Uncertainty Breakdown

•Theoretical:

- Uncertainties in QCD scale, PDF, α_S , and Higgs branching ratios.
- Affects both signal and background models.

•Experimental:

- Luminosity: 2.3%-2.6% across years.
- Pileup Re-weighting: Shape uncertainties for MC contributions.
- Lepton and Jet Identification: Shape uncertainties for muons, electrons, and jets.
- Jet Energy Scale/Resolution (JES/JER): Shape uncertainties affecting event reconstruction.
- B-tagging: Shape uncertainties for b-tagging efficiencies.

Impact on Results

•Normalization vs. Shape Variations:

- Normalization: Affects overall event yield, treated as log-normal distribution.
- **Shape:** Alters event kinematics, affecting distributions non-uniformly.

•ANN Discriminant Shape Uncertainties:

- Modifies NN output and leads to event migration between categories.
- Shifts in binned analysis based on input uncertainties (e.g., JES, JER, b-tagging).

BRUNELLA D'ANZI

SR CUTFLOW

Process	Yields 2016	Yields (2017)	$\mathbf{Yields}(2018)$
Drell-Yan (DY)	11700 ± 220	13000 ± 250	18000 ± 300
Single Higgs production via ggF (ggH)	0.002 ± 0.001	0.002 ± 0.001	0.002 ± 0.001
Top quark pair $+$ vector boson (TTV)	4.5 ± 0.1	5.5 ± 0.1	4.5 ± 0.1
Top quark pair production (TT)	8400 ± 150	9900 ± 180	15400 ± 250
Triboson (VVV)	3.0 ± 0.4	3.5 ± 0.4	3.0 ± 0.4
Diboson (VV)	25.0 ± 1.0	30.0 ± 1.0	25.0 ± 1.0
Single Higgs with vector boson (VH)	0.007 ± 0.001	0.008 ± 0.001	0.007 ± 0.001
Others	0.0003 ± 0.0002	0.0004 ± 0.0002	0.0003 ± 0.0002
\sum backgrounds	20133 ± 280	22939 ± 340	33433 ± 420
Signal (HH, $m_H = 125 GeV$)	0.160 ± 0.005	0.186 ± 0.006	0.146 ± 0.005
Total expected	20133 ± 280	22939 ± 340	33433 ± 420
Observed	20309	22984	33839

Table 8.4: Cut flow table after signal region selection with expected and data event yields for different
processes in 2016, 2017, and 2018. The expected background yield is computed as the sum
of all background contributions. The vector boson V can be both a Z boson and W boson.

SYSTEMATIC UNCERTAINTIES IMPACTS

- The impact of a nuisance parameter θ is defined as the shift Δr induced on the value of the signal strength r by fixing θ to its best fit value and brought to its 1 σ best-fit values, with all other parameters profiled as normal values and are allowed to vary freely to find the minimum of a profiled likelihood for the given fixed value of θ .
- The most important source of systematic uncertainty that affects the measurements is the systematics on the **statistical error for the last bins of the DNN** (called improperly prop_binch2mu_bin*), followed by the jet energy scale for the leading and subleading jets (j1jes, j2jes) and the transverse momentum of leading and subleading muons (l1pt, l2pt).

Full Run 2 Impacts

BRUNELLA D'ANZI

THEORETICAL EXPECTATION CURVE

BRUNELLA D'ANZI

- In symbols
 - $\sigma(\kappa_{\lambda}, \kappa_t) = \mathbf{c} (\kappa_{\lambda}, \kappa_t) \cdot \mathbf{v}$, where
 - $\mathbf{c} = (\kappa_{\lambda^2} \kappa_t^2, \kappa_t^4, \kappa_{\lambda} \kappa_t^3)$ is the vector of the couplings and
 - $\mathbf{v} = (t, b, i)$ is the vector of the components
- We have the full simulation of 4 NLO samples : $\kappa_{\lambda} = 0, 1, 2.45, 5, \kappa_{\lambda} = 1$ Choosing 3 of them, we know their σ from the generator and can compute their **c**_i (example : for $\kappa_{\lambda} = 5, \sigma_{NLO} = 79.03$ fb and **c** = (25, 1, 5)) So this relation holds:

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} = \begin{pmatrix} c_1^1 & c_1^2 & c_1^3 \\ c_2^1 & c_2^2 & c_2^3 \\ c_3^1 & c_3^2 & c_3^3 \end{pmatrix} \begin{pmatrix} t \\ b \\ i \end{pmatrix}$$
 or, in con

r, in condensed form, $oldsymbol{\sigma} = \mathbf{C} \mathbf{v}$

Therefore, by inverting the matrix

$$\mathbf{C}^{-1}\boldsymbol{\sigma} \quad \Box \quad \boldsymbol{\sigma}(\kappa_{\lambda},\kappa_{t}) = \mathbf{c}^{T}(\kappa_{\lambda},\kappa_{t})\mathbf{C}^{-1}\boldsymbol{\sigma}$$
Total cross section,
or shape (dc/dx) Couplings to model Known from the
couplings of the
input samples that are scaled
and summed

PhD Thesis Defense | 2025 April 7th, Bari

 $\mathbf{v} =$